IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp72-82.html
   My bibliography  Save this article

Energy efficiency – How far can we raise the bar? Revealing the potential of best available technologies

Author

Listed:
  • Letschert, Virginie
  • Desroches, Louis-Benoit
  • Ke, Jing
  • McNeil, Michael

Abstract

This paper presents the first attempt to quantify the potential impacts of a massive deployment of state-of-the-art energy-efficient technologies in the most energy-consuming economies in the world: the United States, the European Union, China, and India. We first identified the most efficient technologies that are currently available for a wide range of end uses in the residential and industrial sectors. The technologies we selected are either engineered with the best available existing components or are the most promising emerging technologies believed to be producible on a large scale in the near future. Using a bottom-up energy model developed at Lawrence Berkeley National Laboratory, we modeled the most aggressive foreseeable policy that would result in making the best available technologies mandatory by 2015. We estimate that adoption of the best available technologies would avoid 2600 TWh, or about 20% of the projected energy consumption and 1.5 Gt of carbon dioxide emissions by 2030. We believe that this study, which brings engineering knowledge of technologies together with a rigorous energy model, is the most reliable analysis to date of the maximum potential of energy efficiency.

Suggested Citation

  • Letschert, Virginie & Desroches, Louis-Benoit & Ke, Jing & McNeil, Michael, 2013. "Energy efficiency – How far can we raise the bar? Revealing the potential of best available technologies," Energy, Elsevier, vol. 59(C), pages 72-82.
  • Handle: RePEc:eee:energy:v:59:y:2013:i:c:p:72-82
    DOI: 10.1016/j.energy.2013.06.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyers, S & McMahon, J.E & McNeil, M & Liu, X, 2003. "Impacts of US federal energy efficiency standards for residential appliances," Energy, Elsevier, vol. 28(8), pages 755-767.
    2. Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
    3. Zhou, Nan & Fridley, David & McNeil, Michael & Zheng, Nina & Letschert, Virginie & Ke, Jing & Saheb, Yamina, 2011. "Analysis of potential energy saving and CO2 emission reduction of home appliances and commercial equipments in China," Energy Policy, Elsevier, vol. 39(8), pages 4541-4550, August.
    4. McNeil, Michael A. & Iyer, Maithili & Meyers, Stephen & Letschert, Virginie E. & McMahon, James E., 2008. "Potential benefits from improved energy efficiency of key electrical products: The case of India," Energy Policy, Elsevier, vol. 36(9), pages 3467-3476, September.
    5. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    6. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    7. Vine, Edward & du Pont, Peter & Waide, Paul, 2001. "Evaluating the impact of appliance efficiency labeling programs and standards: process, impact, and market transformation evaluations," Energy, Elsevier, vol. 26(11), pages 1041-1059.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beaudreau, Bernard C. & Lightfoot, H. Douglas, 2015. "The physical limits to economic growth by R&D funded innovation," Energy, Elsevier, vol. 84(C), pages 45-52.
    2. Paoli, Leonardo & Cullen, Jonathan, 2020. "Technical limits for energy conversion efficiency," Energy, Elsevier, vol. 192(C).
    3. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    4. Hussain, Arif & Perwez, Usama & Ullah, Kafait & Kim, Chul-Hwan & Asghar, Nosheen, 2021. "Long-term scenario pathways to assess the potential of best available technologies and cost reduction of avoided carbon emissions in an existing 100% renewable regional power system: A case study of G," Energy, Elsevier, vol. 221(C).
    5. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    6. Dupuis, Eric D. & Momen, Ayyoub M. & Patel, Viral K. & Shahab, Shima, 2019. "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," Applied Energy, Elsevier, vol. 235(C), pages 451-462.
    7. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    8. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    9. Alexander N. Alekseev & Aleksei V. Bogoviz & Ludmila P. Goncharenko & Sergey A. Sybachin, 2019. "A Critical Review of Russia s Energy Strategy in the Period until 2035," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 95-102.
    10. Oliveira, Mario Henrique da Fonseca & Rebelatto, Daisy Aparecida do Nascimento, 2015. "The evaluation of electric energy consumption in the Brazilian residential sector: A technological improvement proposal in order to increase its efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 836-844.
    11. Stevanovic, Vladimir D. & Wala, Tadeusz & Muszynski, Slawomir & Milic, Milos & Jovanovic, Milorad, 2014. "Efficiency and power upgrade by an additional high pressure economizer installation at an aged 620 MWe lignite-fired power plant," Energy, Elsevier, vol. 66(C), pages 907-918.
    12. Lei Tian & Zhe Ding & Yongxuan Wang & Haiyan Duan & Shuo Wang & Jie Tang & Xian’en Wang, 2016. "Analysis of the Driving Factors and Contributions to Carbon Emissions of Energy Consumption from the Perspective of the Peak Volume and Time Based on LEAP," Sustainability, MDPI, vol. 8(6), pages 1-17, May.
    13. Park, Nyun-Bae & Park, Sang Yong & Kim, Jong-Jin & Choi, Dong Gu & Yun, Bo Yeong & Hong, Jong Chul, 2017. "Technical and economic potential of highly efficient boiler technologies in the Korean industrial sector," Energy, Elsevier, vol. 121(C), pages 884-891.
    14. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    2. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    4. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    5. Turner, Karen & Katris, Antonios, 2017. "A ‘Carbon Saving Multiplier’ as an alternative to rebound in considering reduced energy supply chain requirements from energy efficiency?," Energy Policy, Elsevier, vol. 103(C), pages 249-257.
    6. Arno E. Scheepens & Joost G. Vogtländer, 2018. "Insulation or Smart Temperature Control for Domestic Heating: A Combined Analysis of the Costs, the Eco-Costs, the Customer Perceived Value, and the Rebound Effect of Energy Saving," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    7. Sondes Kahouli & Xavier Pautrel, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," Working Papers 2020.28, Fondazione Eni Enrico Mattei.
    8. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    9. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    10. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    11. Gioele Figus & Patrizio Lecca & Karen Turner & Peter McGregor, 2016. "Increased energy efficiency in Scottish households: trading-off economic benefits and energy rebound effects?," EcoMod2016 9454, EcoMod.
    12. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    13. Gioele Figus & Patrizio Lecca & Peter McGregor & Karen Turner, 2017. "Energy efficiency as an instrument of regional development policy? Trading-off the benefits of an economic stimulus and energy rebound effects," Working Papers 1702, University of Strathclyde Business School, Department of Economics.
    14. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
    15. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    16. Santarius, Tilman & Soland, Martin, 2018. "How Technological Efficiency Improvements Change Consumer Preferences: Towards a Psychological Theory of Rebound Effects," Ecological Economics, Elsevier, vol. 146(C), pages 414-424.
    17. Craglia, Matteo & Cullen, Jonathan, 2020. "Do vehicle efficiency improvements lead to energy savings? The rebound effect in Great Britain," Energy Economics, Elsevier, vol. 88(C).
    18. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    19. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    20. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:72-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.