IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp116-124.html
   My bibliography  Save this article

Modeling long-term dynamical evolution of Southeast European power transmission system

Author

Listed:
  • Kanevce, Aleksandra
  • Mishkovski, Igor
  • Kocarev, Ljupco

Abstract

Southeast European power transmission system is modeled by analyzing the system as an evolving grid, which is continually upgrading in order to satisfy the increasing load demand and certain reliability requirements. We adopt a model (known as OPA model) which satisfies two requirements. First, the model is based on probabilistic line outages and overloads, and it models the network using DC load flow and linear programming dispatch of generation. Second, the model includes systematic upgrading of the production and transmission capacities of the electric-power system. The results show the most vulnerable transmission lines of the Southeast European power transmission system that need to be upgraded. Moreover, the results indicate that the electric power system of Southeast Europe is functioning well with 20% excess of electricity generation. In comparison with the actual excess, it can be concluded that merging the electric power systems of the separate countries in the region into a common trade will produce a great economic benefit in investment of new generation capacities.

Suggested Citation

  • Kanevce, Aleksandra & Mishkovski, Igor & Kocarev, Ljupco, 2013. "Modeling long-term dynamical evolution of Southeast European power transmission system," Energy, Elsevier, vol. 57(C), pages 116-124.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:116-124
    DOI: 10.1016/j.energy.2013.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213001795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Vleuten, Erik & Lagendijk, Vincent, 2010. "Transnational infrastructure vulnerability: The historical shaping of the 2006 European "Blackout"," Energy Policy, Elsevier, vol. 38(4), pages 2042-2052, April.
    2. Blumsack, Seth & Fernandez, Alisha, 2012. "Ready or not, here comes the smart grid!," Energy, Elsevier, vol. 37(1), pages 61-68.
    3. Canizes, Bruno & Soares, João & Vale, Zita & Khodr, H.M., 2012. "Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems," Energy, Elsevier, vol. 45(1), pages 1007-1017.
    4. LaCommare, Kristina Hamachi & Eto, Joseph H., 2006. "Cost of power interruptions to electricity consumers in the United States (US)," Energy, Elsevier, vol. 31(12), pages 1845-1855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    2. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    3. Zhang, Ding-Xue & Zhao, Dan & Guan, Zhi-Hong & Wu, Yonghong & Chi, Ming & Zheng, Gui-Lin, 2016. "Probabilistic analysis of cascade failure dynamics in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 299-309.
    4. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canizes, Bruno & Soares, João & Vale, Zita & Khodr, H.M., 2012. "Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems," Energy, Elsevier, vol. 45(1), pages 1007-1017.
    2. Soares, João & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads," Applied Energy, Elsevier, vol. 162(C), pages 1074-1088.
    3. Odin Foldvik Eikeland & Filippo Maria Bianchi & Inga Setså Holmstrand & Sigurd Bakkejord & Sergio Santos & Matteo Chiesa, 2022. "Uncovering Contributing Factors to Interruptions in the Power Grid: An Arctic Case," Energies, MDPI, vol. 15(1), pages 1-21, January.
    4. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    5. Anu Narayanan & M. Granger Morgan, 2012. "Sustaining Critical Social Services During Extended Regional Power Blackouts," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1183-1193, July.
    6. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    7. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    8. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
    9. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    10. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    11. Majid Hashemi & Glenn Jenkins, 2021. "The Economic Benefits of Mitigating the Risk of Unplanned Power Outages," Working Paper 1468, Economics Department, Queen's University.
    12. Elie Bouri & Joseph El Assad, 2016. "The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions," Energies, MDPI, vol. 9(8), pages 1-12, July.
    13. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.
    14. Praktiknjo, Aaron J., 2014. "Stated preferences based estimation of power interruption costs in private households: An example from Germany," Energy, Elsevier, vol. 76(C), pages 82-90.
    15. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    16. Aurelie Tricoire, 2015. "Uncertainty, vision, and the vitality of the emerging smart grid," Post-Print hal-02351994, HAL.
    17. Xavier Labandeira & Baltazar Manzano, 2012. "Some Economic Aspects of Energy Security," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 47-64.
    18. Christian Growitsch & Raimund Malischek & Sebastian Nick & Heike Wetzel, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, Verein für Socialpolitik, vol. 16(3), pages 307-323, August.
    19. Juyong Lee & Youngsang Cho, 2021. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Papers 2107.06174, arXiv.org.
    20. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:116-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.