IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v48y2012i1p278-283.html
   My bibliography  Save this article

Long distance transmission systems for the future electricity supply – Analysis of possibilities and restrictions

Author

Listed:
  • Humpert, Christof

Abstract

To transmit electric bulk power in an economic and efficient way over long distances up to several 1000 km it is necessary to use Ultra-High-Voltages (UHV), i.e. AC (alternating current)-voltages of 1000 kV and DC (direct current)-voltages of ±800 kV or higher. Especially the UHVDC (ultra high voltage direct current) transmission is one of the key solutions to transmit bulk power over very large distances. Two bipolar systems with transmission voltage of ±800 kV, transmission power up to 7.2 GW and length of up to 2000 km are in operation in China since 2010 and additional systems especially in China and India are planned. So it seems that the UHVDC technology is state of the art and can be used easily. But there are some restrictions which make it difficult to use UHVDC transmission in all cases. To analyze this in detail, the state of the art of long distance UHVDC transmission systems is summarized and the possible future development is analyzed. Different aspects are discussed, which will possibly limit the use of the UHVDC technology in future.

Suggested Citation

  • Humpert, Christof, 2012. "Long distance transmission systems for the future electricity supply – Analysis of possibilities and restrictions," Energy, Elsevier, vol. 48(1), pages 278-283.
  • Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:278-283
    DOI: 10.1016/j.energy.2012.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raza, Muhammad & Collados, Carlos & Gomis-Bellmunt, Oriol, 2017. "Reactive power management in an offshore AC network having multiple voltage source converters," Applied Energy, Elsevier, vol. 206(C), pages 793-803.
    2. Huva, Robert & Dargaville, Roger & Rayner, Peter, 2016. "Optimising the deployment of renewable resources for the Australian NEM (National Electricity Market) and the effect of atmospheric length scales," Energy, Elsevier, vol. 96(C), pages 468-473.
    3. Monadi, Mehdi & Zamani, M. Amin & Koch-Ciobotaru, Cosmin & Candela, Jose Ignacio & Rodriguez, Pedro, 2016. "A communication-assisted protection scheme for direct-current distribution networks," Energy, Elsevier, vol. 109(C), pages 578-591.
    4. Paweł Mikrut & Paweł Zydroń, 2023. "Numerical Modeling of PD Pulses Formation in a Gaseous Void Located in XLPE Insulation of a Loaded HVDC Cable," Energies, MDPI, vol. 16(17), pages 1-21, September.
    5. Ocłoń, Paweł & Cisek, Piotr & Taler, Dawid & Pilarczyk, Marcin & Szwarc, Tomasz, 2015. "Optimizing of the underground power cable bedding using momentum-type particle swarm optimization method," Energy, Elsevier, vol. 92(P2), pages 230-239.
    6. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    7. Zhu, Chengfeng & Li, Yanzhong & Tan, Hongbo & Shi, Jiamin & Nie, Yang & Qiu, Qingquan, 2022. "Multi-field coupled effect of thermal disturbance on quench and recovery characteristic along the hybrid energy pipe," Energy, Elsevier, vol. 246(C).
    8. Kim, H.Y. & Kim, M.K., 2017. "Optimal generation rescheduling for meshed AC/HIS grids with multi-terminal voltage source converter high voltage direct current and battery energy storage system," Energy, Elsevier, vol. 119(C), pages 309-321.
    9. Zhang, Yuhan & Wang, Shunliang & Liu, Tianqi & Zhang, Shu & Lu, Qingyuan, 2021. "A traveling-wave-based protection scheme for the bipolar voltage source converter based high voltage direct current (VSC-HVDC) transmission lines in renewable energy integration," Energy, Elsevier, vol. 216(C).
    10. Van de Graaf, Thijs & Sovacool, Benjamin K., 2014. "Thinking big: Politics, progress, and security in the management of Asian and European energy megaprojects," Energy Policy, Elsevier, vol. 74(C), pages 16-27.
    11. Wang, Jianxiao & Zhong, Haiwang & Xia, Qing & Kang, Chongqing, 2017. "Optimal transmission conversion from alternating current to high voltage direct current transmission systems for limiting short circuit currents," Energy, Elsevier, vol. 118(C), pages 545-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:48:y:2012:i:1:p:278-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.