IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v48y2012i1p153-159.html
   My bibliography  Save this article

Consequences for district heating and natural gas grids when aiming towards 100% electricity supply with renewables

Author

Listed:
  • Kusch, Wolfgang
  • Schmidla, Tim
  • Stadler, Ingo

Abstract

The increasing use of fluctuating generation plants like wind turbines and solar power systems, makes new demands on the existing power grid. These are considered to be essential for low-voltage grids. Based on the latest request from the German Federal Government for a progressive improvement of the heat insulation of the residential building stock the impact of a comprehensive passive house standard is analysed. Seeing that, a prediction for the future perspective of natural gas grids and district heating grids throughout Germany in 2050 has been done. Regarding this context the role of decentralised combined heat and power (CHP) as well as heat pumps increases [1]. In connection with enlarged thermal storages, their specific application can add a substantial contribution in combination with an aimed electricity supply of 100% renewable energy. The rational use of these and other supply systems is investigated within a basic virtual power plant model.

Suggested Citation

  • Kusch, Wolfgang & Schmidla, Tim & Stadler, Ingo, 2012. "Consequences for district heating and natural gas grids when aiming towards 100% electricity supply with renewables," Energy, Elsevier, vol. 48(1), pages 153-159.
  • Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:153-159
    DOI: 10.1016/j.energy.2012.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    3. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    4. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    5. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    6. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    2. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    3. Deng, Liangwei & Yang, Hongnan & Liu, Gangjin & Zheng, Dan & Chen, Ziai & Liu, Yi & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui, 2014. "Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater," Applied Energy, Elsevier, vol. 134(C), pages 349-355.
    4. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    5. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    6. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    7. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    8. Ito, Masakazu & Takano, Akihisa & Shinji, Takao & Yagi, Takahiro & Hayashi, Yasuhiro, 2017. "Electricity adjustment for capacity market auction by a district heating and cooling system," Applied Energy, Elsevier, vol. 206(C), pages 623-633.
    9. Takeshita, Takuma & Aki, Hirohisa & Kawajiri, Kotaro & Ishida, Masayoshi, 2021. "Assessment of utilization of combined heat and power systems to provide grid flexibility alongside variable renewable energy systems," Energy, Elsevier, vol. 214(C).
    10. Erdogdu, Erkan, 2010. "A paper on the unsettled question of Turkish electricity market: Balancing and settlement system (Part I)," Applied Energy, Elsevier, vol. 87(1), pages 251-258, January.
    11. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    12. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    13. Melanie Werner & Sebastian Muschik & Mathias Ehrenwirth & Christoph Trinkl & Tobias Schrag, 2022. "Sector Coupling Potential of a District Heating Network by Consideration of Residual Load and CO 2 Emissions," Energies, MDPI, vol. 15(17), pages 1-18, August.
    14. Vögelin, Philipp & Georges, Gil & Boulouchos, Konstatinos, 2017. "Design analysis of gas engine combined heat and power plants (CHP) for building and industry heat demand under varying price structures," Energy, Elsevier, vol. 125(C), pages 356-366.
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    16. Li, Yingjian & Li, Jiezhi & Qiu, Qi & Xu, Yafei, 2010. "Energy auditing and energy conservation potential for glass works," Applied Energy, Elsevier, vol. 87(8), pages 2438-2446, August.
    17. Vögelin, Philipp & Koch, Ben & Georges, Gil & Boulouchos, Konstatinos, 2017. "Heuristic approach for the economic optimisation of combined heat and power (CHP) plants: Operating strategy, heat storage and power," Energy, Elsevier, vol. 121(C), pages 66-77.
    18. Zhang, Di & Samsatli, Nouri J. & Hawkes, Adam D. & Brett, Dan J.L. & Shah, Nilay & Papageorgiou, Lazaros G., 2013. "Fair electricity transfer price and unit capacity selection for microgrids," Energy Economics, Elsevier, vol. 36(C), pages 581-593.
    19. Zhi Zhu & Miaomiao Wang & Zuoxia Xing & Yang Liu & Shihong Chen, 2023. "Optimal Configuration of Power/Thermal Energy Storage for a Park-Integrated Energy System Considering Flexible Load," Energies, MDPI, vol. 16(18), pages 1-17, September.
    20. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:48:y:2012:i:1:p:153-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.