Calculating the diffuse solar radiation in regions without solar radiation measurements
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.05.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Munawwar, Saima & Muneer, Tariq, 2007. "Statistical approach to the proposition and validation of daily diffuse irradiation models," Applied Energy, Elsevier, vol. 84(4), pages 455-475, April.
- Li, Huashan & Bu, Xianbiao & Lian, Yongwang & Zhao, Liang & Ma, Weibin, 2012. "Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China," Renewable Energy, Elsevier, vol. 44(C), pages 469-473.
- Gopinathan, K.K. & Soler, Alfonso, 1995. "Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range," Energy, Elsevier, vol. 20(7), pages 657-667.
- Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A comparative study to estimate daily diffuse solar radiation over India," Energy, Elsevier, vol. 34(11), pages 1792-1796.
- Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
- Li, Huashan & Lian, Yongwang & Wang, Xianlong & Ma, Weibin & Zhao, Liang, 2011. "Solar constant values for estimating solar radiation," Energy, Elsevier, vol. 36(3), pages 1785-1789.
- Oliveira, Amauri P. & Escobedo, João F. & Machado, Antonio J. & Soares, Jacyra, 2002. "Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil," Applied Energy, Elsevier, vol. 71(1), pages 59-73, January.
- Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
- Janjai, S. & Praditwong, P. & Moonin, C., 1996. "A new model for computing monthly average daily diffuse radiation for Bangkok," Renewable Energy, Elsevier, vol. 9(1), pages 1283-1286.
- Jiang, Yingni, 2009. "Estimation of monthly mean daily diffuse radiation in China," Applied Energy, Elsevier, vol. 86(9), pages 1458-1464, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
- Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
- Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
- Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
- Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
- Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
- Mohammadi, Kasra & Shamshirband, Shahaboddin & Petković, Dalibor & Khorasanizadeh, Hossein, 2016. "Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1570-1579.
- Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
- Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
- Nunez Munoz, Maria & Ballantyne, Erica E.F. & Stone, David A., 2022. "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, Elsevier, vol. 241(C).
- Lukač, Niko & Seme, Sebastijan & Žlaus, Danijel & Štumberger, Gorazd & Žalik, Borut, 2014. "Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data," Energy, Elsevier, vol. 66(C), pages 598-609.
- Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
- Khorasanizadeh, Hossein & Mohammadi, Kasra, 2016. "Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 338-362.
- Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
- Cao, Fei & Li, Huashan & Yang, Tian & Li, Yan & Zhu, Tianyu & Zhao, Liang, 2017. "Evaluation of diffuse solar radiation models in Northern China: New model establishment and radiation sources comparison," Renewable Energy, Elsevier, vol. 103(C), pages 708-720.
- Li, Huashan & Bu, Xianbiao & Lian, Yongwang & Zhao, Liang & Ma, Weibin, 2012. "Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China," Renewable Energy, Elsevier, vol. 44(C), pages 469-473.
- Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
- Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
- Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
- Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
- Bakirci, Kadir, 2015. "Models for the estimation of diffuse solar radiation for typical cities in Turkey," Energy, Elsevier, vol. 82(C), pages 827-838.
- Karakoti, Indira & Das, Prasun Kumar & Singh, S.K., 2012. "Predicting monthly mean daily diffuse radiation for India," Applied Energy, Elsevier, vol. 91(1), pages 412-425.
- Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
- Li, Huashan & Ma, Weibin & Wang, Xianlong & Lian, Yongwang, 2011. "Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study," Renewable Energy, Elsevier, vol. 36(7), pages 1944-1948.
- Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
- Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
- Shamshirband, Shahaboddin & Mohammadi, Kasra & Khorasanizadeh, Hossein & Yee, Por Lip & Lee, Malrey & Petković, Dalibor & Zalnezhad, Erfan, 2016. "Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 428-435.
- Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
- El Mghouchi, Y. & El Bouardi, A. & Sadouk, A. & Fellak, I. & Ajzoul, T., 2016. "Comparison of three solar radiation models and their validation under all sky conditions – case study: Tetuan city in northern of Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1432-1444.
- Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
- Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Wang, Xiukang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 732-747.
More about this item
Keywords
Diffuse solar radiation; Global solar radiation; Radiation measurements unavailable; H-based method; Non-H method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:611-615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.