IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v43y2012i1p30-36.html
   My bibliography  Save this article

Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures

Author

Listed:
  • Sánchez, N.E.
  • Callejas, A.
  • Millera, A.
  • Bilbao, R.
  • Alzueta, M.U.

Abstract

The formation of polycyclic aromatic hydrocarbons (PAH)11Polycyclic aromatic hydrocarbons. and soot from the pyrolysis of acetylene was studied, taking into account the influence of the operating conditions, such as gas residence time and temperature. The influence of gas residence time was considered between 1.28 and 3.88 s for the experiments carried out under different temperatures from 1073 to 1223 K. The total PAH was calculated as the addition of PAH concentration found in different locations, namely adsorbed on soot and on the reactor walls, and at the outlet gas stream. The relationship between the PAH concentrations and their carcinogenic equivalence sum (KE)22Carcinogenic equivalence sum. was also evaluated. The results obtained showed that temperature and residence time have a high influence on pyrolysis products, especially on the PAH concentration adsorbed on soot, which exhibited the highest KE in all cases studied.

Suggested Citation

  • Sánchez, N.E. & Callejas, A. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures," Energy, Elsevier, vol. 43(1), pages 30-36.
  • Handle: RePEc:eee:energy:v:43:y:2012:i:1:p:30-36
    DOI: 10.1016/j.energy.2011.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211008036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Yinhu & Sun, Yuming & Lu, Xiaofeng & Gou, Xiaolong & Sun, Sicong & Yan, Jin & Song, Yangfan & Zhang, Pengyuan & Wang, Quanhai & Ji, Xuanyu, 2018. "Soot formation characteristics of ethylene premixed burner-stabilized stagnation flame with dimethyl ether addition," Energy, Elsevier, vol. 150(C), pages 709-721.
    2. Yan, Binhang & Cheng, Yan & Li, Tianyang & Cheng, Yi, 2017. "Detailed kinetic modeling of acetylene decomposition/soot formation during quenching of coal pyrolysis in thermal plasma," Energy, Elsevier, vol. 121(C), pages 10-20.
    3. Arnal, C. & Alzueta, M.U. & Millera, A. & Bilbao, R., 2012. "Influence of water vapor addition on soot oxidation at high temperature," Energy, Elsevier, vol. 43(1), pages 55-63.
    4. Zhang, Yindi & Liu, Fengshan & Clavel, Daniel & Smallwood, Gregory J. & Lou, Chun, 2019. "Measurement of soot volume fraction and primary particle diameter in oxygen enriched ethylene diffusion flames using the laser-induced incandescence technique," Energy, Elsevier, vol. 177(C), pages 421-432.
    5. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:43:y:2012:i:1:p:30-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.