IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p271-277.html
   My bibliography  Save this article

Comparison of direct and indirect PV power output using filters, lens, and fiber transport

Author

Listed:
  • Firat, C.
  • Beyene, A.

Abstract

Seven configurations of Photovoltaic (PV) energy conversion systems were investigated and their performances compared to direct solar PV conversion. The systems involved use of filters, concentrator lens, fiber transport, and direct use of PV. Transmission of concentrated light onto PV cell proved to be the most efficient, but also the most expensive. However, transmission of filtered light onto PV cell using a plastic optical fiber (POF) bundle was the most affordable. The current price of fiber optic for light transport, though interesting, renders them economically not viable for energy conversion.

Suggested Citation

  • Firat, C. & Beyene, A., 2012. "Comparison of direct and indirect PV power output using filters, lens, and fiber transport," Energy, Elsevier, vol. 41(1), pages 271-277.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:271-277
    DOI: 10.1016/j.energy.2011.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J.K. & Kokala, A., 2010. "Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal," Energy, Elsevier, vol. 35(12), pages 4862-4869.
    2. Han, Hyunjoo & Tai Kim, Jeong, 2010. "Application of high-density daylight for indoor illumination," Energy, Elsevier, vol. 35(6), pages 2654-2666.
    3. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    4. Dooly, Gerard & Fitzpatrick, Colin & Lewis, Elfed, 2008. "Optical sensing of hazardous exhaust emissions using a UV based extrinsic sensor," Energy, Elsevier, vol. 33(4), pages 657-666.
    5. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kandilli, Canan & Külahlı, Gürhan, 2017. "Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 101(C), pages 713-727.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    2. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    3. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    4. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    5. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    6. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    7. Roberts, Frank & Yang, Siliang & Du, Hu & Yang, Rebecca, 2023. "Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition," Renewable Energy, Elsevier, vol. 207(C), pages 601-610.
    8. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    9. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    10. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    12. Keliang, Liu & Jie, Ji & Tin-tai, Chow & Gang, Pei & Hanfeng, He & Aiguo, Jiang & Jichun, Yang, 2009. "Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor – A case study in Tibet," Renewable Energy, Elsevier, vol. 34(12), pages 2680-2687.
    13. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    14. Farshchimonfared, M. & Bilbao, J.I. & Sproul, A.B., 2015. "Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings," Renewable Energy, Elsevier, vol. 76(C), pages 27-35.
    15. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2019. "Study on the energy performance enhancement of a new PCMs integrated hybrid system with the active cooling and hybrid ventilations," Energy, Elsevier, vol. 179(C), pages 111-128.
    16. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    17. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    18. Assoa, Ya Brigitte & Sauzedde, François & Boillot, Benjamin, 2018. "Numerical parametric study of the thermal and electrical performance of a BIPV/T hybrid collector for drying applications," Renewable Energy, Elsevier, vol. 129(PA), pages 121-131.
    19. Chen, Jinxin & Pan, Guobing & Ouyang, Jing & Ma, Jin & Fu, Lei & Zhang, Libin, 2020. "Study on impacts of dust accumulation and rainfall on PV power reduction in East China," Energy, Elsevier, vol. 194(C).
    20. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:271-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.