Methodological aspects in synthesis of combined sugar and ethanol production plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2011.12.035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lazzaretto, Andrea & Toffolo, Andrea, 2008. "A method to separate the problem of heat transfer interactions in the synthesis of thermal systems," Energy, Elsevier, vol. 33(2), pages 163-170.
- Molyneaux, A. & Leyland, G. & Favrat, D., 2010. "Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps," Energy, Elsevier, vol. 35(2), pages 751-758.
- Morandin, Matteo & Toffolo, Andrea & Lazzaretto, Andrea & Maréchal, François & Ensinas, Adriano V. & Nebra, Silvia A., 2011. "Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system," Energy, Elsevier, vol. 36(6), pages 3675-3690.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
- Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part B: Alternative system configurations," Energy, Elsevier, vol. 45(1), pages 386-396.
- Toffolo, Andrea, 2014. "A synthesis/design optimization algorithm for Rankine cycle based energy systems," Energy, Elsevier, vol. 66(C), pages 115-127.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
- Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
- Toffolo, Andrea, 2014. "A synthesis/design optimization algorithm for Rankine cycle based energy systems," Energy, Elsevier, vol. 66(C), pages 115-127.
- Morandin, Matteo & Mercangöz, Mehmet & Hemrle, Jaroslav & Maréchal, François & Favrat, Daniel, 2013. "Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles," Energy, Elsevier, vol. 58(C), pages 571-587.
- Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
- Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
- Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
- Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
- Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part I: Power generation," Energy, Elsevier, vol. 35(8), pages 3143-3154.
- Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
- Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
- Lim, Jeng Shiun & Abdul Manan, Zainuddin & Hashim, Haslenda & Wan Alwi, Sharifah Rafidah, 2013. "Towards an integrated, resource-efficient rice mill complex," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 41-51.
- Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Feng, Yifu, 2017. "Planning community energy system in the industry 4.0 era: Achievements, challenges and a potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 710-721.
- Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
- Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
- Gerber, Léda & Maréchal, François, 2012. "Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland," Energy, Elsevier, vol. 45(1), pages 908-923.
- Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2018. "Thermodynamic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 150(C), pages 434-450.
- Raluca Suciu & Paul Stadler & Ivan Kantor & Luc Girardin & François Maréchal, 2019. "Systematic Integration of Energy-Optimal Buildings With District Networks," Energies, MDPI, vol. 12(15), pages 1-38, July.
- Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
- Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
More about this item
Keywords
Synthesis; Pinch Analysis; HEATSEP; Sugarcane;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:165-174. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.