IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v40y2012i1p291-299.html
   My bibliography  Save this article

Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system

Author

Listed:
  • Fang, Guochang
  • Tian, Lixin
  • Sun, Mei
  • Fu, Min

Abstract

A novel three-dimensional energy-saving and emission-reduction chaotic system is proposed, which has not yet been reported in present literature. The system is established in accordance with the complicated relationship between energy-saving and emission-reduction, carbon emissions and economic growth. The dynamic behavior of the system is analyzed by means of Lyapunov exponents and bifurcation diagrams. With undetermined coefficient method, expressions of homoclinic orbits of the system are obtained. The Šilnikov theorem guarantees that the system has Smale horseshoes and the horseshoes chaos. Artificial neural network (ANN) is used to identify the quantitative coefficients in the simulation models according to the statistical data of China, and an empirical study of the real system is carried out with the results in perfect agreement with actual situation. It is found that the sooner and more perfect energy-saving and emission-reduction is started, the easier and sooner the maximum of the carbon emissions will be achieved so as to reduce carbon emissions and energy intensity. Numerical simulations are presented to demonstrate the results.

Suggested Citation

  • Fang, Guochang & Tian, Lixin & Sun, Mei & Fu, Min, 2012. "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system," Energy, Elsevier, vol. 40(1), pages 291-299.
  • Handle: RePEc:eee:energy:v:40:y:2012:i:1:p:291-299
    DOI: 10.1016/j.energy.2012.01.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212000862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    2. Sun, Mei & Wang, Xiaofang & Chen, Ying & Tian, Lixin, 2011. "Energy resources demand-supply system analysis and empirical research based on non-linear approach," Energy, Elsevier, vol. 36(9), pages 5460-5465.
    3. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    4. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
    5. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
    6. Zhou, Nan & Fridley, David & McNeil, Michael & Zheng, Nina & Letschert, Virginie & Ke, Jing & Saheb, Yamina, 2011. "Analysis of potential energy saving and CO2 emission reduction of home appliances and commercial equipments in China," Energy Policy, Elsevier, vol. 39(8), pages 4541-4550, August.
    7. Zhang, Daisheng & Aunan, Kristin & Martin Seip, Hans & Vennemo, Haakon, 2011. "The energy intensity target in China's 11th Five-Year Plan period--Local implementation and achievements in Shanxi Province," Energy Policy, Elsevier, vol. 39(7), pages 4115-4124, July.
    8. Zhang, Jianjun & Fu, Meichen & Geng, Yuhuan & Tao, Jin, 2011. "Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China," Energy Policy, Elsevier, vol. 39(6), pages 3029-3032, June.
    9. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    10. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
    11. Ozturk, Ilhan & Acaravci, Ali, 2010. "CO2 emissions, energy consumption and economic growth in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3220-3225, December.
    12. Liao, Gwo-Ching, 2011. "A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power," Energy, Elsevier, vol. 36(2), pages 1018-1029.
    13. Mallah, Subhash & Bansal, N.K., 2010. "Nuclear and clean coal technology options for sustainable development in India," Energy, Elsevier, vol. 35(7), pages 3031-3039.
    14. Mendiluce, María & Pérez-Arriaga, Ignacio & Ocaña, Carlos, 2010. "Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?," Energy Policy, Elsevier, vol. 38(1), pages 639-645, January.
    15. Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
    16. Yoon, Kyung Hwan & Ratti, Ronald A., 2011. "Energy price uncertainty, energy intensity and firm investment," Energy Economics, Elsevier, vol. 33(1), pages 67-78, January.
    17. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    18. Sun, Mei & Tian, Lixin & Fu, Ying & Qian, Wei, 2007. "Dynamics and adaptive synchronization of the energy resource system," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 879-888.
    19. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    20. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    21. Bull, Lyndall & Thompson, Derek, 2011. "Developing forest sinks in Australia and the United States -- A forest owner's prerogative," Forest Policy and Economics, Elsevier, vol. 13(5), pages 311-317, June.
    22. Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2013. "The impacts of carbon tax on energy intensity and economic growth – A dynamic evolution analysis on the case of China," Applied Energy, Elsevier, vol. 110(C), pages 17-28.
    2. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    3. Xinghua Fan & Ying Zhang & Jiuli Yin, 2018. "Evolutionary Analysis of a Three-Dimensional Carbon Price Dynamic System," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    4. Fang, Yujuan & Chen, Laijun & Mei, Shengwei & Wei, Wei & Huang, Shaowei & Liu, Feng, 2019. "Coal or electricity? An evolutionary game approach to investigate fuel choices of urban heat supply systems," Energy, Elsevier, vol. 181(C), pages 107-122.
    5. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    6. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & He, Yu & Lu, Longxi, 2018. "How to promote the development of energy-saving and emission-reduction with changing economic growth rate—A case study of China," Energy, Elsevier, vol. 143(C), pages 732-745.
    7. LiuWei Zhao & Charles Oduro Acheampong Otoo, 2019. "Stability and Complexity of a Novel Three-Dimensional Environmental Quality Dynamic Evolution System," Complexity, Hindawi, vol. 2019, pages 1-11, April.
    8. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    9. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    10. Xinghua Fan & Xuxia Li & Jiuli Yin, 2019. "Impact of environmental tax on green development: A nonlinear dynamical system analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-23, September.
    11. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    12. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    13. Fang, Guochang & Tian, Lixin & Liu, Menghe & Fu, Min & Sun, Mei, 2018. "How to optimize the development of carbon trading in China—Enlightenment from evolution rules of the EU carbon price," Applied Energy, Elsevier, vol. 211(C), pages 1039-1049.
    14. Lin, Boqiang & Liu, Xia, 2013. "Electricity tariff reform and rebound effect of residential electricity consumption in China," Energy, Elsevier, vol. 59(C), pages 240-247.
    15. Yang, Honglin & Wang, Lin & Tian, Lixin, 2015. "Evolution of competition in energy alternative pathway and the influence of energy policy on economic growth," Energy, Elsevier, vol. 88(C), pages 223-233.
    16. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2014. "Government control or low carbon lifestyle? – Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system," Energy Policy, Elsevier, vol. 68(C), pages 498-507.
    17. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2014. "Government control or low carbon lifestyle? – Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system," Energy Policy, Elsevier, vol. 68(C), pages 498-507.
    2. Jimenez, Raul & Mercado, Jorge, 2014. "Energy intensity: A decomposition and counterfactual exercise for Latin American countries," Energy Economics, Elsevier, vol. 42(C), pages 161-171.
    3. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    4. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    5. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    6. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    7. van Kooten, G. Cornelis, 2004. "Economics of Forest and Agricultural Carbon Sinks," Working Papers 18160, University of Victoria, Resource Economics and Policy.
    8. Nijnik, Maria & Pajot, Guillaume & Moffat, Andy J. & Slee, Bill, 2013. "An economic analysis of the establishment of forest plantations in the United Kingdom to mitigate climatic change," Forest Policy and Economics, Elsevier, vol. 26(C), pages 34-42.
    9. Rosenberger, Randall S. & Stanley, Tom D., 2006. "Measurement, generalization, and publication: Sources of error in benefit transfers and their management," Ecological Economics, Elsevier, vol. 60(2), pages 372-378, December.
    10. Kyoung-Min Lim & Seul-Ye Lim & Seung-Hoon Yoo, 2014. "Oil Consumption, CO 2 Emission, and Economic Growth: Evidence from the Philippines," Sustainability, MDPI, vol. 6(2), pages 1-13, February.
    11. Zandersen, Marianne & Tol, Richard S.J., 2009. "A meta-analysis of forest recreation values in Europe," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 109-130, January.
    12. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    13. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    14. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    15. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    16. Shaikh, Sabina L. & Sun, Lili & van Kooten, G. Cornelis, 2005. "Are Agricultural Values a Reliable Guide in Determining Landowners’ Decisions to Create Carbon Forest Sinks?," Working Papers 37017, University of Victoria, Resource Economics and Policy.
    17. Strand, Jon, 2016. "Mitigation incentives with climate finance and treaty options," Energy Economics, Elsevier, vol. 57(C), pages 166-174.
    18. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    19. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    20. Kovacs, Kent F. & Haight, Robert G. & Jung, Suhyun & Locke, Dexter H. & O'Neil-Dunne, Jarlath, 2013. "The marginal cost of carbon abatement from planting street trees in New York City," Ecological Economics, Elsevier, vol. 95(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:40:y:2012:i:1:p:291-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.