IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3148-3158.html
   My bibliography  Save this article

Environmental assessment of grid connected photovoltaic plants with 2-axis tracking versus fixed modules systems

Author

Listed:
  • Bayod-Rújula, Ángel A.
  • Lorente-Lafuente, Ana M.
  • Cirez-Oto, Fernando

Abstract

The use of two axes tracking systems has been widely implemented because of the higher rates in energy production that these systems can achieve. However, the reduction of the PV modules cost makes the economic advantage of these tracking systems not so evident and this has aroused the interest of analysing them from other points of view such as efficiency or energy performance and environmental impact.

Suggested Citation

  • Bayod-Rújula, Ángel A. & Lorente-Lafuente, Ana M. & Cirez-Oto, Fernando, 2011. "Environmental assessment of grid connected photovoltaic plants with 2-axis tracking versus fixed modules systems," Energy, Elsevier, vol. 36(5), pages 3148-3158.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3148-3158
    DOI: 10.1016/j.energy.2011.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Hermann-Josef & Pick, Erich, 2004. "Energy yield ratio and cumulative energy demand for wind energy converters," Energy, Elsevier, vol. 29(12), pages 2289-2295.
    2. Bayod-Rújula, Angel A. & Ortego-Bielsa, Abel & Martínez-Gracia, Amaya, 2011. "Photovoltaics on flat roofs: Energy considerations," Energy, Elsevier, vol. 36(4), pages 1996-2010.
    3. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    4. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    5. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    6. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    7. Gürzenich, D. & Wagner, H.-J., 2004. "Cumulative energy demand and cumulative emissions of photovoltaics production in Europe," Energy, Elsevier, vol. 29(12), pages 2297-2303.
    8. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    9. Battisti, Riccardo & Corrado, Annalisa, 2005. "Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology," Energy, Elsevier, vol. 30(7), pages 952-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    2. Miller, Ian & Gençer, Emre & Vogelbaum, Hilary S. & Brown, Patrick R. & Torkamani, Sarah & O'Sullivan, Francis M., 2019. "Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power," Applied Energy, Elsevier, vol. 238(C), pages 760-774.
    3. Muath Bani Salim & Dervis Emre Demirocak & Nael Barakat, 2018. "A Fuzzy Based Model for Standardized Sustainability Assessment of Photovoltaic Cells," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    4. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    5. Tefera Mekonnen & Venkata Ramayya & Ramchandra Bhandari & Emiyamrew Minaye & Shewit Tsegay, 2024. "Techno-economic Comparative Analysis of Floating/On-Ground Solar PV System for Electrification of Gilgel Gibe I Auxiliary Load in Ethiopia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 218-225, March.
    6. Zhang, Da & Tang, Songlin & Lin, Bao & Liu, Zhen & Zhang, Xiliang & Zhang, Danwei, 2012. "Co-benefit of polycrystalline large-scale photovoltaic power in China," Energy, Elsevier, vol. 41(1), pages 436-442.
    7. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    8. Zihan Yang & Zhiquan Xiao, 2023. "A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology," Energies, MDPI, vol. 16(23), pages 1-31, November.
    9. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    10. Seme, Sebastijan & Srpčič, Gregor & Kavšek, Domen & Božičnik, Stane & Letnik, Tomislav & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2017. "Dual-axis photovoltaic tracking system – Design and experimental investigation," Energy, Elsevier, vol. 139(C), pages 1267-1274.
    11. Bizon, Nicu, 2013. "Energy harvesting from the PV Hybrid Power Source," Energy, Elsevier, vol. 52(C), pages 297-307.
    12. Kadri, Riad & Andrei, Horia & Gaubert, Jean-Paul & Ivanovici, Traian & Champenois, Gérard & Andrei, Paul, 2012. "Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions," Energy, Elsevier, vol. 42(1), pages 57-67.
    13. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    14. Su, Xing & Xu, Zehan & Tian, Shaochen & Chen, Chaoyang & Huang, Yixiang & Geng, Yining & Chen, Junfeng, 2023. "Life cycle assessment of three typical solar energy utilization systems in different regions of China," Energy, Elsevier, vol. 278(C).
    15. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    16. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
    2. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    3. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    4. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    5. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    6. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    9. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.
    10. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    11. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    12. Sherwani, A.F. & Usmani, J.A. & Varun, 2010. "Life cycle assessment of solar PV based electricity generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 540-544, January.
    13. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    14. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    15. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    16. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    17. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    18. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    19. Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
    20. Tiwari, Arvind & Barnwal, P. & Sandhu, G.S. & Sodha, M.S., 2009. "Energy metrics analysis of hybrid - photovoltaic (PV) modules," Applied Energy, Elsevier, vol. 86(12), pages 2615-2625, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3148-3158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.