IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1171-1179.html
   My bibliography  Save this article

Optical performance of inclined south–north axis three-positions tracked solar panels

Author

Listed:
  • Zhong, Hao
  • Li, Guihua
  • Tang, Runsheng
  • Dong, Wenli

Abstract

In this work, the optical performance of solar panels with a new sun-tracking technique was theoretically investigated based on the proposed mathematical method and monthly horizontal radiation. The mechanism of the investigated sun-tracking is that the attitude angle of solar panels is daily adjusted three times at three fixed positions: eastward, southward, and westward in the morning, noon, and afternoon, respectively, by rotating solar panels about the inclined south–north axis (ISNA-3P sun-tracking). Calculation results showed that, for ISNA-3P tracked solar panels with a yearly fixed tilt-angle of the ISNA, the maximum annual collectible radiation on ISNA-3P tracked solar panels was about 93% of that on a solar panel with 2-axis sun-tracking; whereas for those with the ISNA being yearly adjusted four times at three fixed tilt-angles, it was about 96%. Results also indicated that the attempt to further increase the annual solar gain on ISNA-3P tracked solar panels by seasonally optimizing design of the sun-tracking system for maximizing solar gain in each of four seasons was not efficient, and thus not advisable in practical applications. Optimal parametric designs of such sun-tracking system for maximizing the annual solar gain on solar panels in different cases were also presented.

Suggested Citation

  • Zhong, Hao & Li, Guihua & Tang, Runsheng & Dong, Wenli, 2011. "Optical performance of inclined south–north axis three-positions tracked solar panels," Energy, Elsevier, vol. 36(2), pages 1171-1179.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1171-1179
    DOI: 10.1016/j.energy.2010.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    2. Al-Mohamad, Ali, 2004. "Efficiency improvements of photo-voltaic panels using a Sun-tracking system," Applied Energy, Elsevier, vol. 79(3), pages 345-354, November.
    3. Tang, Runsheng & Wu, Tong, 2004. "Optimal tilt-angles for solar collectors used in China," Applied Energy, Elsevier, vol. 79(3), pages 239-248, November.
    4. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    5. Morcos, V.H., 1994. "Optimum tilt angle and orientation for solar collectors in Assiut, Egypt," Renewable Energy, Elsevier, vol. 4(3), pages 291-298.
    6. Ghosh, H.R. & Bhowmik, N.C. & Hussain, M., 2010. "Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka," Renewable Energy, Elsevier, vol. 35(6), pages 1292-1297.
    7. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2011. "Optical performance of vertical single-axis tracked solar panels," Renewable Energy, Elsevier, vol. 36(1), pages 64-68.
    8. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2010. "Optical performance of inclined south-north single-axis tracked solar panels," Energy, Elsevier, vol. 35(6), pages 2511-2516.
    9. Gopinathan, K.K. & Maliehe, N.B. & Mpholo, M.I., 2007. "A study on the intercepted insolation as a function of slope and azimuth of the surface," Energy, Elsevier, vol. 32(3), pages 213-220.
    10. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    2. Cătălin Alexandru, 2021. "Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform," Energies, MDPI, vol. 14(3), pages 1-30, January.
    3. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    4. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    5. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    6. Manoel Henriques de Sá Campos & Chigueru Tiba, 2021. "npTrack: A n-Position Single Axis Solar Tracker Model for Optimized Energy Collection," Energies, MDPI, vol. 14(4), pages 1-13, February.
    7. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    8. Guihua Li & Jingjing Tang & Runsheng Tang, 2019. "Performance and Design Optimization of a One-Axis Multiple Positions Sun-Tracked V-trough for Photovoltaic Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.
    9. Yilmaz, Saban & Riza Ozcalik, Hasan & Dogmus, Osman & Dincer, Furkan & Akgol, Oguzhan & Karaaslan, Muharrem, 2015. "Design of two axes sun tracking controller with analytically solar radiation calculations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 997-1005.
    10. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    11. Guihua Li & Yamei Yu & Runsheng Tang, 2020. "Performance and Design Optimization of Two-Mirror Composite Concentrating PV Systems," Energies, MDPI, vol. 13(11), pages 1-23, June.
    12. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    2. Ma, Yi & Li, Guihua & Tang, Runsheng, 2011. "Optical performance of vertical axis three azimuth angles tracked solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1784-1791, May.
    3. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2010. "Optical performance of inclined south-north single-axis tracked solar panels," Energy, Elsevier, vol. 35(6), pages 2511-2516.
    4. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    5. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    6. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    7. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2011. "Optical performance of vertical single-axis tracked solar panels," Renewable Energy, Elsevier, vol. 36(1), pages 64-68.
    8. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    9. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    10. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    11. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    12. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    13. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    14. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    15. Azam, Md Sadequl & Bhattacharjee, Atish & Hassan, Mahedi & Rahaman, Mashudur & Aziz, Shahin & Ali Shaikh, Md Aftab & Islam, Md Saidul, 2024. "Performance enhancement of solar PV system introducing semi-continuous tracking algorithm based solar tracker," Energy, Elsevier, vol. 289(C).
    16. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    17. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    18. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    19. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    20. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1171-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.