IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i12p6806-6820.html
   My bibliography  Save this article

Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind

Author

Listed:
  • Kang, Charles A.
  • Brandt, Adam R.
  • Durlofsky, Louis J.

Abstract

This study considers the optimization of operations for an integrated fossil-renewable energy system with CO2 capture. The system treated consists of a coal-fired power station, a temperature-swing absorption CO2 capture facility powered by a natural gas combustion turbine, and wind generation. System components are represented in a modular fashion using energy and mass balances. Optimization is applied to determine hourly system dispatch to maximize operating profit given energy prices and wind generation data. A CO2 emission constraint, modeled after a California law, is enforced. Idealized and realistic scenarios are considered, along with several different system specifications. For a year of operation, simulated using available wind and energy price data, operating profit for optimized operation is shown to be approximately 20% greater than profit using a heuristic procedure. The benefit from optimization is positively correlated with electricity price variability and mean wind generation. The impact of different component specifications and different CO2 absorption solvents on the optimal operation of the energy system is also assessed. In total, this study demonstrates that the effective operating cost of an integrated energy system operating under a CO2 emission constraint can be substantially reduced via optimal flexible operation.

Suggested Citation

  • Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J., 2011. "Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind," Energy, Elsevier, vol. 36(12), pages 6806-6820.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6806-6820
    DOI: 10.1016/j.energy.2011.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habib, M.A & Said, S.A.M & El-Hadidy, M.A & Al-Zaharna, I, 1999. "Optimization procedure of a hybrid photovoltaic wind energy system," Energy, Elsevier, vol. 24(11), pages 919-929.
    2. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    3. Kim, T.S., 2004. "Comparative analysis on the part load performance of combined cycle plants considering design performance and power control strategy," Energy, Elsevier, vol. 29(1), pages 71-85.
    4. Jaramillo, O.A. & Borja, M.A. & Huacuz, J.M., 2004. "Using hydropower to complement wind energy: a hybrid system to provide firm power," Renewable Energy, Elsevier, vol. 29(11), pages 1887-1909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    2. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    3. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Powell, Kody M., 2018. "Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles," Applied Energy, Elsevier, vol. 228(C), pages 577-592.
    4. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    5. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    6. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Baxter, Larry L., 2015. "Plant-level dynamic optimization of Cryogenic Carbon Capture with conventional and renewable power sources," Applied Energy, Elsevier, vol. 149(C), pages 354-366.
    7. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    8. Brodrick, Philip G. & Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J., 2015. "Optimization of carbon-capture-enabled coal-gas-solar power generation," Energy, Elsevier, vol. 79(C), pages 149-162.
    9. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    10. Bo Wang & Liming Zhang & Hengrui Ma & Hongxia Wang & Shaohua Wan, 2019. "Parallel LSTM-Based Regional Integrated Energy System Multienergy Source-Load Information Interactive Energy Prediction," Complexity, Hindawi, vol. 2019, pages 1-13, November.
    11. Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J. & Jayaweera, Indira, 2016. "Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique," Applied Energy, Elsevier, vol. 179(C), pages 1209-1219.
    12. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    13. Il-oh Kang & Hyunseok You & Kyungshik Choi & Sung-kook Jeon & Jaehee Lee & Dongho Lee, 2022. "Modeling and Economic Operation of Energy Hub Considering Energy Market Price and Demand," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    14. Brodrick, Philip G. & Brandt, Adam R. & Durlofsky, Louis J., 2018. "Optimal design and operation of integrated solar combined cycles under emissions intensity constraints," Applied Energy, Elsevier, vol. 226(C), pages 979-990.
    15. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Samuelsen, Scott, 2012. "Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing," Energy, Elsevier, vol. 42(1), pages 546-562.
    16. Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    17. Khalilpour, Rajab & Milani, Dia & Qadir, Abdul & Chiesa, Matteo & Abbas, Ali, 2017. "A novel process for direct solvent regeneration via solar thermal energy for carbon capture," Renewable Energy, Elsevier, vol. 104(C), pages 60-75.
    18. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    20. Bandyopadhyay, Rubenka & Patiño-Echeverri, Dalia, 2016. "An alternate wind power integration mechanism: Coal plants with flexible amine-based CCS," Renewable Energy, Elsevier, vol. 85(C), pages 704-713.
    21. Wang, Fu & Deng, Shuai & Zhao, Jun & Wang, Junyao & Sun, Taiwei & Yan, Jinyue, 2017. "Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture," Energy, Elsevier, vol. 119(C), pages 278-287.
    22. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Baxter, Larry L., 2016. "Dynamic optimization of a hybrid system of energy-storing cryogenic carbon capture and a baseline power generation unit," Applied Energy, Elsevier, vol. 172(C), pages 66-79.
    23. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    24. Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Abdul-Manan, Zainuddin & Klemeš, Jiří Jaromír, 2012. "A process integration targeting method for hybrid power systems," Energy, Elsevier, vol. 44(1), pages 6-10.
    25. Lara, Y. & Martínez, A. & Lisbona, P. & Romeo, L.M., 2016. "Heat integration of alternative Ca-looping configurations for CO2 capture," Energy, Elsevier, vol. 116(P1), pages 956-962.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    2. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    3. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    4. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    5. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    6. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    7. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    8. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    9. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    10. Nazar, Mehrdad Setayesh & Jafarpour, Pourya & Shafie-khah, Miadreza & Catalão, João P.S., 2024. "Optimal planning of self-healing multi-carriers energy systems considering integration of smart buildings and parking lots energy resources," Energy, Elsevier, vol. 286(C).
    11. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    12. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    13. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    14. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    15. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    16. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    18. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    19. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    20. Tina, Giuseppe Marco & Gagliano, Salvina, 2011. "Probabilistic modelling of hybrid solar/wind power system with solar tracking system," Renewable Energy, Elsevier, vol. 36(6), pages 1719-1727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6806-6820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.