Evaluating Japan’s national greenhouse gas reduction policy using a bottom-up residential end-use energy simulation model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115792
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shimoda, Yoshiyuki & Yamaguchi, Yukio & Okamura, Tomo & Taniguchi, Ayako & Yamaguchi, Yohei, 2010. "Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model," Applied Energy, Elsevier, vol. 87(6), pages 1944-1952, June.
- Shimoda, Yoshiyuki & Okamura, Tomo & Yamaguchi, Yohei & Yamaguchi, Yukio & Taniguchi, Ayako & Morikawa, Takao, 2010. "City-level energy and CO2 reduction effect by introducing new residential water heaters," Energy, Elsevier, vol. 35(12), pages 4880-4891.
- Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
- Shimoda, Yoshiyuki & Asahi, Takahiro & Taniguchi, Ayako & Mizuno, Minoru, 2007. "Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model," Energy, Elsevier, vol. 32(9), pages 1617-1633.
- McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Blonsky, Michael & Maguire, Jeff & McKenna, Killian & Cutler, Dylan & Balamurugan, Sivasathya Pradha & Jin, Xin, 2021. "OCHRE: The Object-oriented, Controllable, High-resolution Residential Energy Model for Dynamic Integration Studies," Applied Energy, Elsevier, vol. 290(C).
- Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
- Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
- Gui, Xuechen & Gou, Zhonghua, 2022. "Household energy technologies in New South Wales, Australia: Regional differences and renewables adoption rates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Yunus Zengin & Serkan Naktiyok & Erdoğan Kaygın & Onur Kavak & Ethem Topçuoğlu, 2021. "An Investigation upon Industry 4.0 and Society 5.0 within the Context of Sustainable Development Goals," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
- Diana M Nova Díaz & Aritz Adin & Eduardo Sánchez Iriso, 2024. "QALYs in adults with cerebral palsy: Mapping from the San Martin Scale onto the EQ-5D-5L instrument," Working Papers 2024-07, FEDEA.
- Shimoda, Yoshiyuki & Sugiyama, Minami & Nishimoto, Ryuya & Momonoki, Takashi, 2021. "Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050," Applied Energy, Elsevier, vol. 303(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shimoda, Yoshiyuki & Sugiyama, Minami & Nishimoto, Ryuya & Momonoki, Takashi, 2021. "Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050," Applied Energy, Elsevier, vol. 303(C).
- Yamaguchi, Yohei & Akai, Kenju & Shen, Junyi & Fujimura, Naoki & Shimoda, Yoshiyuki & Saijo, Tatsuyoshi, 2013. "Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices," Applied Energy, Elsevier, vol. 102(C), pages 1148-1159.
- Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
- McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
- Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
- Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
- Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
- Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
- Clune, Stephen & Morrissey, John & Moore, Trivess, 2012. "Size matters: House size and thermal efficiency as policy strategies to reduce net emissions of new developments," Energy Policy, Elsevier, vol. 48(C), pages 657-667.
- Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
- Hamed Nabizadeh Rafsanjani & Changbum R. Ahn & Mahmoud Alahmad, 2015. "A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings," Energies, MDPI, vol. 8(10), pages 1-34, October.
- Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
- Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
- Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
- Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
- Marlon Schlemminger & Raphael Niepelt & Rolf Brendel, 2021. "A Cross-Country Model for End-Use Specific Aggregated Household Load Profiles," Energies, MDPI, vol. 14(8), pages 1-24, April.
- Charlier, Dorothée & Risch, Anna, 2012.
"Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector,"
Energy Policy, Elsevier, vol. 46(C), pages 170-184.
- Dorothée Charlier & Anna Risch, 2012. "Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector," Post-Print hal-01385441, HAL.
- Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
More about this item
Keywords
GHG emission reduction policy; Bottom-up end-use energy simulation; Residential energy consumption; Occupant behavior; Effect difference among households;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312757. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.