IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p2130-2133.html
   My bibliography  Save this article

An energy-saving opportunity in producing lubricating oil using mixed-solventin simulated Rotary Disc Contacting (RDC) extraction tower

Author

Listed:
  • Hatamipour, M.S.
  • Fakhr Hoseini, S.M.
  • Tavakkoli, T.
  • Mehrkesh, A.H.

Abstract

Industrial processes are the most energy consuming processes in the world. Modification of these processes helps us with controlling the consumption of energy and minimizing energy loss. Changing raw materials is one of the ways through which we can optimize industrial processes. In this paper, a new solvent mixture (furfural+a co-solvent) was used for the extraction of lubricating base oil from lube-oil cut. It was found that the energy consumption of the new solvent mixture for obtaining a product with the same quality was much lower than the original solvent. By using this new solvent mixture, the operating temperature of the top of tower was reduced by 30K. This leads to a high reduction in energy consumption in extraction of aromatics from lube oil. At our new extraction process by means of using new solvent mixture, the maximum energy saving was 38% per cubic meter of produced raffinate.

Suggested Citation

  • Hatamipour, M.S. & Fakhr Hoseini, S.M. & Tavakkoli, T. & Mehrkesh, A.H., 2010. "An energy-saving opportunity in producing lubricating oil using mixed-solventin simulated Rotary Disc Contacting (RDC) extraction tower," Energy, Elsevier, vol. 35(5), pages 2130-2133.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2130-2133
    DOI: 10.1016/j.energy.2010.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bujak, J., 2008. "Energy savings and heat efficiency in the paper industry: A case study of a corrugated board machine," Energy, Elsevier, vol. 33(11), pages 1597-1608.
    2. Persson, Jörgen & Berntsson, Thore, 2009. "Influence of seasonal variations on energy-saving opportunities in a pulp mill," Energy, Elsevier, vol. 34(10), pages 1705-1714.
    3. Bisio, G. & Rubatto, G., 2000. "Energy saving and some environment improvements in coke-oven plants," Energy, Elsevier, vol. 25(3), pages 247-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kruczek, Tadeusz, 2013. "Determination of annual heat losses from heat and steam pipeline networks and economic analysis of their thermomodernisation," Energy, Elsevier, vol. 62(C), pages 120-131.
    2. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    3. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    4. Ji, Xiaoyan & Lundgren, Joakim & Wang, Chuan & Dahl, Jan & Grip, Carl-Erik, 2012. "Simulation and energy optimization of a pulp and paper mill – Evaporation plant and digester," Applied Energy, Elsevier, vol. 97(C), pages 30-37.
    5. Zou, Jing & Chang, Qing & Arinez, Jorge & Xiao, Guoxian, 2017. "Data-driven modeling and real-time distributed control for energy efficient manufacturing systems," Energy, Elsevier, vol. 127(C), pages 247-257.
    6. Sun, Kai & Tseng, Chen-Ting & Shan-Hill Wong, David & Shieh, Shyan-Shu & Jang, Shi-Shang & Kang, Jia-Lin & Hsieh, Wei-Dong, 2015. "Model predictive control for improving waste heat recovery in coke dry quenching processes," Energy, Elsevier, vol. 80(C), pages 275-283.
    7. Svensson, Elin & Berntsson, Thore, 2011. "Planning future investments in emerging energy technologies for pulp mills considering different scenarios for their investment cost development," Energy, Elsevier, vol. 36(11), pages 6508-6519.
    8. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    9. Johansson, Maria T. & Söderström, Mats, 2011. "Options for the Swedish steel industry – Energy efficiency measures and fuel conversion," Energy, Elsevier, vol. 36(1), pages 191-198.
    10. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    11. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    12. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    13. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    14. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    15. Liu, Changxin & Xie, Zhihui & Sun, Fengrui & Chen, Lingen, 2017. "Exergy analysis and optimization of coking process," Energy, Elsevier, vol. 139(C), pages 694-705.
    16. Hansen, Kenneth & Connolly, David & Lund, Henrik & Drysdale, David & Thellufsen, Jakob Zinck, 2016. "Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat," Energy, Elsevier, vol. 115(P3), pages 1663-1671.
    17. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    18. Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.
    19. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    20. Mei-Ling, Zheng & Wen, Wang, 2010. "Seasonal energy utilization optimization in an enterprise," Energy, Elsevier, vol. 35(9), pages 3932-3940.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2130-2133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.