IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p759-763.html
   My bibliography  Save this article

Thermodynamic characterization of bio-fuels: Excess functions for binary mixtures containing ETBE and hydrocarbons

Author

Listed:
  • Segovia, José J.
  • Villamañán, Rosa M.
  • Martín, M. Carmen
  • Chamorro, César R.
  • Villamañán, Miguel A.

Abstract

European energy policy is promoting the use of bio-fuels for transportation. Bioethers and bioalcohols are used as blending agents for enhancing the octane number. They make gasoline work harder, help the engine last longer and reduce air pollution. They also cause changes in the fuel properties. Development of renewable fuels needs both knowledge of new thermodynamic data and improvement of clean energy technologies. In this context, the use of ethanol of vegetable origin in its manufacture process, increases the interest of ETBE or bio-ETBE as an oxygenated additive. A complete study of the behaviour of ETBE + hydrocarbons mixtures is presented. Some experimental data concerning vapor-liquid equilibria and heats of mixing were determined in our laboratory. All the techniques have a high accuracy. The data were reduced by well-known models, such as NRTL and used to model the thermodynamic properties.

Suggested Citation

  • Segovia, José J. & Villamañán, Rosa M. & Martín, M. Carmen & Chamorro, César R. & Villamañán, Miguel A., 2010. "Thermodynamic characterization of bio-fuels: Excess functions for binary mixtures containing ETBE and hydrocarbons," Energy, Elsevier, vol. 35(2), pages 759-763.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:759-763
    DOI: 10.1016/j.energy.2009.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    2. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    3. Suurs, Roald A.A. & Hekkert, Marko P., 2009. "Competition between first and second generation technologies: Lessons from the formation of a biofuels innovation system in the Netherlands," Energy, Elsevier, vol. 34(5), pages 669-679.
    4. Cerqueira Leite, Rogério Cezar de & Verde Leal, Manoel Regis Lima & Barbosa Cortez, Luís Augusto & Griffin, W. Michael & Gaya Scandiffio, Mirna Ivonne, 2009. "Can Brazil replace 5% of the 2025 gasoline world demand with ethanol?," Energy, Elsevier, vol. 34(5), pages 655-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yee, Kian Fei & Mohamed, Abdul Rahman & Tan, Soon Huat, 2013. "A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 604-620.
    2. Liu, Xiongmin & Ito, Shunsuke & Wada, Yuji, 2015. "Oxidation characteristic and products of ETBE (ethyl tert-butyl ether)," Energy, Elsevier, vol. 82(C), pages 184-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renó, Maria Luiza Grillo & Lora, Electo Eduardo Silva & Palacio, José Carlos Escobar & Venturini, Osvaldo José & Buchgeister, Jens & Almazan, Oscar, 2011. "A LCA (life cycle assessment) of the methanol production from sugarcane bagasse," Energy, Elsevier, vol. 36(6), pages 3716-3726.
    2. Agostinho, Feni & Ortega, Enrique, 2012. "Integrated food, energy and environmental services production as an alternative for small rural properties in Brazil," Energy, Elsevier, vol. 37(1), pages 103-114.
    3. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    4. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    5. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    6. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    7. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    8. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    9. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    10. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
    11. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    12. Sheinbaum, Claudia & Ruíz, Belizza J. & Ozawa, Leticia, 2011. "Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives," Energy, Elsevier, vol. 36(6), pages 3629-3638.
    13. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    14. Ravagnani, Mauro A.S.S. & Thonern, Werner I. & Caballero, Jose A., 2007. "A mathematical model for the composition of Brazilian ethanol shares for exportation to be blended to gasoline," Energy Policy, Elsevier, vol. 35(10), pages 5060-5063, October.
    15. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    16. Ohimain, Elijah I., 2013. "Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?," Energy Policy, Elsevier, vol. 54(C), pages 352-359.
    17. Salles-Filho, Sergio Luiz Monteiro & Castro, Paula Felício Drummond de & Bin, Adriana & Edquist, Charles & Ferro, Ana Flávia Portilho & Corder, Solange, 2017. "Perspectives for the Brazilian bioethanol sector: The innovation driver," Energy Policy, Elsevier, vol. 108(C), pages 70-77.
    18. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    19. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    20. Victor M. Berrueta & Montserrat Serrano-Medrano & Carlos García-Bustamante & Marta Astier & Omar R. Masera, 2017. "Promoting sustainable local development of rural communities and mitigating climate change: the case of Mexico’s Patsari improved cookstove project," Climatic Change, Springer, vol. 140(1), pages 63-77, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:759-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.