IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p550-555.html
   My bibliography  Save this article

Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

Author

Listed:
  • Lugo-Leyte, R.
  • Zamora-Mata, J.M.
  • Toledo-Velázquez, M.
  • Salazar-Pereyra, M.
  • Torres-Aldaco, A.

Abstract

This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment.

Suggested Citation

  • Lugo-Leyte, R. & Zamora-Mata, J.M. & Toledo-Velázquez, M. & Salazar-Pereyra, M. & Torres-Aldaco, A., 2010. "Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment," Energy, Elsevier, vol. 35(2), pages 550-555.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:550-555
    DOI: 10.1016/j.energy.2009.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arrieta, Felipe R. Ponce & Lora, Electo E. Silva, 2005. "Influence of ambient temperature on combined-cycle power-plant performance," Applied Energy, Elsevier, vol. 80(3), pages 261-272, March.
    2. Hermann Haselbacher, 2005. "Performance of water/steam injected gas turbine power plants consisting of standard gas turbines and turbo expanders," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 3(1/2), pages 12-23.
    3. Bussman, W.R. & Baukal, C.E., 2009. "Ambient condition effects on process heater efficiency," Energy, Elsevier, vol. 34(10), pages 1624-1635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitaly Sergeev & Irina Anikina & Konstantin Kalmykov, 2021. "Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines," Energies, MDPI, vol. 14(9), pages 1-26, May.
    2. Ge, Y.T. & Tassou, S.A. & Chaer, I. & Suguartha, N., 2009. "Performance evaluation of a tri-generation system with simulation and experiment," Applied Energy, Elsevier, vol. 86(11), pages 2317-2326, November.
    3. González-Díaz, Abigail & Alcaráz-Calderón, Agustín M. & González-Díaz, Maria Ortencia & Méndez-Aranda, Ángel & Lucquiaud, Mathieu & González-Santaló, Jose Miguel, 2017. "Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture," Energy, Elsevier, vol. 134(C), pages 221-233.
    4. Jesus L. Lobo & Igor Ballesteros & Izaskun Oregi & Javier Del Ser & Sancho Salcedo-Sanz, 2020. "Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants," Energies, MDPI, vol. 13(3), pages 1-28, February.
    5. Lee, Jae Hong & Kim, Tong Seop & Kim, Eui-hwan, 2017. "Prediction of power generation capacity of a gas turbine combined cycle cogeneration plant," Energy, Elsevier, vol. 124(C), pages 187-197.
    6. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    7. Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
    8. Meng, Measrainsey & Sanders, Kelly T., 2019. "A data-driven approach to investigate the impact of air temperature on the efficiencies of coal and natural gas generators," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    10. Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).
    11. Li, Hailong & Ditaranto, Mario & Yan, Jinyue, 2012. "Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles," Applied Energy, Elsevier, vol. 97(C), pages 164-169.
    12. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    13. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    14. de Lima, Romulo S. & Schaeffer, Roberto, 2011. "The energy efficiency of crude oil refining in Brazil: A Brazilian refinery plant case," Energy, Elsevier, vol. 36(5), pages 3101-3112.
    15. Bandeira Santos, Alex Álisson & Torres, Ednildo Andrade & de Paula Pereira, Pedro Afonso, 2011. "Experimental investigation of the natural gas confined flames using the OEC," Energy, Elsevier, vol. 36(3), pages 1527-1534.
    16. Zhang, Guoqiang & Zheng, Jiongzhi & Yang, Yongping & Liu, Wenyi, 2016. "A novel LNG cryogenic energy utilization method for inlet air cooling to improve the performance of combined cycle," Applied Energy, Elsevier, vol. 179(C), pages 638-649.
    17. Liqiang Duan & Zhen Wang, 2018. "Performance Study of a Novel Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(12), pages 1-22, December.
    18. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    19. Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
    20. Bogmans, Christian W.J. & Dijkema, Gerard P.J. & van Vliet, Michelle T.H., 2017. "Adaptation of thermal power plants: The (ir)relevance of climate (change) information," Energy Economics, Elsevier, vol. 62(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:550-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.