IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p5328-5335.html
   My bibliography  Save this article

Hydraulic/electric synergy system (HESS) design for heavy hybrid vehicles

Author

Listed:
  • Hui, Sun
  • Lifu, Yang
  • Junqing, Jing

Abstract

Energy storage source is one of the key factors constraining the development of hybrid drive technology. Single energy storage source is difficult to satisfy the hybrid vehicle’s requirements for both energy density and power density. This paper presents a hydraulic/electric synergy system (HESS) for heavy hybrid vehicles to overcome the existing drawbacks of single energy storage source. The key components in the synergy system are sized to improve the fuel economy potential while satisfying the vehicle performance constraints. In order to achieve optimal fuel economy, energy control strategy tailored specially to the synergy system is designed to manage the power distribution between multiple energy sources based on theirs characteristics. The experiments and simulations demonstrate that the proposed synergy system can provide good fuel economy and overall system efficiency.

Suggested Citation

  • Hui, Sun & Lifu, Yang & Junqing, Jing, 2010. "Hydraulic/electric synergy system (HESS) design for heavy hybrid vehicles," Energy, Elsevier, vol. 35(12), pages 5328-5335.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5328-5335
    DOI: 10.1016/j.energy.2010.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antti Lajunen & Panu Sainio & Lasse Laurila & Jenni Pippuri-Mäkeläinen & Kari Tammi, 2018. "Overview of Powertrain Electrification and Future Scenarios for Non-Road Mobile Machinery," Energies, MDPI, vol. 11(5), pages 1-22, May.
    2. Mirzaei, Amin & Jusoh, Awang & Salam, Zainal, 2012. "Design and implementation of high efficiency non-isolated bidirectional zero voltage transition pulse width modulated DC–DC converters," Energy, Elsevier, vol. 47(1), pages 358-369.
    3. Ramakrishnan, R. & Hiremath, Somashekhar S. & Singaperumal, M., 2014. "Design strategy for improving the energy efficiency in series hydraulic/electric synergy system," Energy, Elsevier, vol. 67(C), pages 422-434.
    4. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    5. Daniele Beltrami & Paolo Iora & Laura Tribioli & Stefano Uberti, 2021. "Electrification of Compact Off-Highway Vehicles—Overview of the Current State of the Art and Trends," Energies, MDPI, vol. 14(17), pages 1-30, September.
    6. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    7. Zhang, Shuo & Xiong, Rui & Zhang, Chengning & Sun, Fengchun, 2016. "An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus," Energy, Elsevier, vol. 96(C), pages 437-448.
    8. Puddu, Pierpaolo & Paderi, Maurizio, 2013. "Hydro-pneumatic accumulators for vehicles kinetic energy storage: Influence of gas compressibility and thermal losses on storage capability," Energy, Elsevier, vol. 57(C), pages 326-335.
    9. Shilei Zhou & Paul Walker & Yang Tian & Cong Thanh Nguyen & Nong Zhang, 2021. "Comparison on Energy Economy and Vibration Characteristics of Electric and Hydraulic in-Wheel Drive Vehicles," Energies, MDPI, vol. 14(8), pages 1-15, April.
    10. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    11. Latas, Waldemar & Stojek, Jerzy, 2018. "A new type of hydrokinetic accumulator and its simulation in hydraulic lift with energy recovery system," Energy, Elsevier, vol. 153(C), pages 836-848.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    2. Nayeripour, Majid & Hoseintabar, Mohammad & Niknam, Taher, 2011. "Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system," Renewable Energy, Elsevier, vol. 36(6), pages 1741-1746.
    3. Pérez-Navarro, A. & Alfonso, D. & Ariza, H.E. & Cárcel, J. & Correcher, A. & Escrivá-Escrivá, G. & Hurtado, E. & Ibáñez, F. & Peñalvo, E. & Roig, R. & Roldán, C. & Sánchez, C. & Segura, I. & Vargas, C, 2016. "Experimental verification of hybrid renewable systems as feasible energy sources," Renewable Energy, Elsevier, vol. 86(C), pages 384-391.
    4. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    5. Israfil Hussain & Dulal Chandra Das & Nidul Sinha & Abdul Latif & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller," Energies, MDPI, vol. 13(21), pages 1-20, October.
    6. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    7. Armghan, Hammad & Yang, Ming & Ali, Naghmash & Armghan, Ammar & Alanazi, Abdulaziz, 2022. "Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid," Applied Energy, Elsevier, vol. 316(C).
    8. Rullo, P. & Braccia, L. & Luppi, P. & Zumoffen, D. & Feroldi, D., 2019. "Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 140(C), pages 436-451.
    9. Rui Yang & Yupeng Yuan & Rushun Ying & Boyang Shen & Teng Long, 2020. "A Novel Energy Management Strategy for a Ship’s Hybrid Solar Energy Generation System Using a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(6), pages 1-14, March.
    10. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    11. Jiménez-Fernández, S. & Salcedo-Sanz, S. & Gallo-Marazuela, D. & Gómez-Prada, G. & Maellas, J. & Portilla-Figueras, A., 2014. "Sizing and maintenance visits optimization of a hybrid photovoltaic-hydrogen stand-alone facility using evolutionary algorithms," Renewable Energy, Elsevier, vol. 66(C), pages 402-413.
    12. Carroquino, Javier & Roda, Vicente & Mustata, Radu & Yago, Jesús & Valiño, Luis & Lozano, Antonio & Barreras, Félix, 2018. "Combined production of electricity and hydrogen from solar energy and its use in the wine sector," Renewable Energy, Elsevier, vol. 122(C), pages 251-263.
    13. Wu, Wei & Christiana, Veni Indah & Chen, Shin-An & Hwang, Jenn-Jiang, 2015. "Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor," Energy, Elsevier, vol. 84(C), pages 462-472.
    14. Pierre-Antoine Muselli & Jean-Nicolas Antoniotti & Marc Muselli, 2022. "Climate Change Impacts on Gaseous Hydrogen (H 2 ) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe," Energies, MDPI, vol. 16(1), pages 1-21, December.
    15. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    16. Huang, Qunwu & Shi, Yeqiang & Wang, Yiping & Lu, Linping & Cui, Yong, 2015. "Multi-turbine wind-solar hybrid system," Renewable Energy, Elsevier, vol. 76(C), pages 401-407.
    17. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    18. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2010. "A multi-agent system for energy management of distributed power sources," Renewable Energy, Elsevier, vol. 35(1), pages 174-182.
    19. Zeng, Zheng & Yang, Huan & Zhao, Rongxiang, 2011. "Study on small signal stability of microgrids: A review and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4818-4828.
    20. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5328-5335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.