IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4671-4678.html
   My bibliography  Save this article

Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

Author

Listed:
  • Du, J.D.
  • Han, W.J.
  • Peng, Y.H.
  • Gu, C.C.

Abstract

The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles.

Suggested Citation

  • Du, J.D. & Han, W.J. & Peng, Y.H. & Gu, C.C., 2010. "Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China," Energy, Elsevier, vol. 35(12), pages 4671-4678.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4671-4678
    DOI: 10.1016/j.energy.2010.09.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210005165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.09.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dargay, Joyce & Gately, Dermot, 1997. "Vehicle ownership to 2015: Implications for energy use and emissions," Energy Policy, Elsevier, vol. 25(14-15), pages 1121-1127, December.
    2. Kjarstad, Jan & Johnsson, Filip, 2007. "The European power plant infrastructure--Presentation of the Chalmers energy infrastructure database with applications," Energy Policy, Elsevier, vol. 35(7), pages 3643-3664, July.
    3. Hakamada, Masataka & Furuta, Tetsuharu & Chino, Yasumasa & Chen, Youqing & Kusuda, Hiromu & Mabuchi, Mamoru, 2007. "Life cycle inventory study on magnesium alloy substitution in vehicles," Energy, Elsevier, vol. 32(8), pages 1352-1360.
    4. Li, Tianxiang & Hassan, Mohamed & Kuwana, Kazunori & Saito, Kozo & King, Paul, 2006. "Performance of secondary aluminum melting: Thermodynamic analysis and plant-site experiments," Energy, Elsevier, vol. 31(12), pages 1769-1779.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    2. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    3. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    4. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2019. "Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    5. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2019. "Electric Vehicles as Flexibility Management Strategy for the Electricity System—A Comparison between Different Regions of Europe," Energies, MDPI, vol. 12(13), pages 1-19, July.
    6. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
    7. Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
    8. Clara Pardo Martínez, 2011. "Energy efficiency in the automotive industry evidence from Germany and Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 367-383, April.
    9. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.
    10. Usón, Alfonso Aranda & Capilla, Antonio Valero & Bribián, Ignacio Zabalza & Scarpellini, Sabina & Sastresa, Eva Llera, 2011. "Energy efficiency in transport and mobility from an eco-efficiency viewpoint," Energy, Elsevier, vol. 36(4), pages 1916-1923.
    11. Deepankar Sinha & Virupaxi Bagodi & Debasri Dey, 2020. "The Supply Chain Disruption Framework Post COVID-19: A System Dynamics Model," Foreign Trade Review, , vol. 55(4), pages 511-534, November.
    12. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    13. Sambracos, Evangelos & Paravantis, John, 2006. "A comparative assessment of aggregate car ownership model estimation methodologies," MPRA Paper 52294, University Library of Munich, Germany.
    14. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    15. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
    16. Timilsina, Govinda R. & Dulal, Hari B., 2009. "Regulatory instruments to control environmental externalities from the transport sector," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 41, pages 80-112.
    17. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    18. Liu, Weipeng & Peng, Tao & Tang, Renzhong & Umeda, Yasushi & Hu, Luoke, 2020. "An Internet of Things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes," Energy, Elsevier, vol. 202(C).
    19. Peter H. Kobos & Jon D. Erickson & Thomas E. Drennen, 2003. "Scenario Analysis of Chinese Passenger Vehicle Growth," Contemporary Economic Policy, Western Economic Association International, vol. 21(2), pages 200-217, April.
    20. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4671-4678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.