IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i1p280-294.html
   My bibliography  Save this article

Decomposition for emission baseline setting in China's electricity sector

Author

Listed:
  • Steenhof, Paul A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:1:p:280-294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(05)00323-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
    2. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    3. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    4. Sathaye, Jayant & Murtishaw, Scott & Price, Lynn & Lefranc, Maurice & Roy, Joyashree & Winkler, Harald & Spalding-Fecher, Randall, 2004. "Multiproject baselines for evaluation of electric power projects," Energy Policy, Elsevier, vol. 32(11), pages 1303-1317, July.
    5. Larson, Eric D. & Zongxin, Wu & DeLaquil, Pat & Wenying, Chen & Pengfei, Gao, 2003. "Future implications of China's energy-technology choices," Energy Policy, Elsevier, vol. 31(12), pages 1189-1204, September.
    6. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    7. Shrestha, Ram M. & Timilsina, Govinda R., 1997. "SO2 emission intensities of the power sector in Asia: Effects of generation-mix and fuel-intensity changes," Energy Economics, Elsevier, vol. 19(3), pages 355-362, July.
    8. Frank Jotzo & Axel Michaelowa, 2002. "Estimating the CDM market under the Marrakech Accords," Climate Policy, Taylor & Francis Journals, vol. 2(2-3), pages 179-196, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang Shaohui & Wang Shanshan & Zhang Ruiqin, 2012. "Analysis on the Potential of Greenhouse Gas Emission Reduction in Henan’s Electricity Sector," Energy and Environment Research, Canadian Center of Science and Education, vol. 2(1), pages 195-195, June.
    2. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    3. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    4. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    5. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    6. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    7. Goh, Tian & Ang, B.W. & Su, Bin & Wang, H., 2018. "Drivers of stagnating global carbon intensity of electricity and the way forward," Energy Policy, Elsevier, vol. 113(C), pages 149-156.
    8. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    9. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    10. Bai-Chen, Xie & Ying, Fan & Qian-Qian, Qu, 2012. "Does generation form influence environmental efficiency performance? An analysis of China’s power system," Applied Energy, Elsevier, vol. 96(C), pages 261-271.
    11. Steenhof, Paul A. & Weber, Chris J., 2011. "An assessment of factors impacting Canada's electricity sector's GHG emissions," Energy Policy, Elsevier, vol. 39(7), pages 4089-4096, July.
    12. Agnolucci, Paolo & Ekins, Paul & Iacopini, Giorgia & Anderson, Kevin & Bows, Alice & Mander, Sarah & Shackley, Simon, 2009. "Different scenarios for achieving radical reduction in carbon emissions: A decomposition analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1652-1666, April.
    13. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    14. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    15. Gozgor, Giray & Can, Muhlis, 2016. "Does Export Product Quality Matter for CO2 Emissions? Evidence from China," MPRA Paper 71873, University Library of Munich, Germany.
    16. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    17. Tao, Jing & Yu, Suiran, 2011. "Implementation of energy efficiency standards of household refrigerator/freezer in China: Potential environmental and economic impacts," Applied Energy, Elsevier, vol. 88(5), pages 1890-1905, May.
    18. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    19. Wei Sun & Ming Meng & Yujun He & Hong Chang, 2016. "CO 2 Emissions from China’s Power Industry: Scenarios and Policies for 13th Five-Year Plan," Energies, MDPI, vol. 9(10), pages 1-16, October.
    20. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    21. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    22. O' Mahony, Tadhg & Zhou, P. & Sweeney, John, 2013. "Integrated scenarios of energy-related CO2 emissions in Ireland: A multi-sectoral analysis to 2020," Ecological Economics, Elsevier, vol. 93(C), pages 385-397.
    23. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    24. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    25. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "The EU Emission Trading Scheme: sectoral allocation and factors determining emission changes," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(1), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jie, 2010. "What is the role of openness for China's aggregate industrial SO2 emission?: A structural analysis based on the Divisia decomposition method," Ecological Economics, Elsevier, vol. 69(4), pages 868-886, February.
    2. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    3. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    4. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    5. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    6. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    7. Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
    8. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    9. Wang, Chunhua, 2013. "Differential output growth across regions and carbon dioxide emissions: Evidence from U.S. and China," Energy, Elsevier, vol. 53(C), pages 230-236.
    10. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    11. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    12. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    13. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    14. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    15. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    16. Tijun Fan & Ruiling Luo & Haiyang Xia & Xiaopeng Li, 2015. "Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 319-332, February.
    17. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    18. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    19. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    20. Zhang, Ming & Mu, Hailin & Ning, Yadong, 2009. "Accounting for energy-related CO2 emission in China, 1991-2006," Energy Policy, Elsevier, vol. 37(3), pages 767-773, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:1:p:280-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.