IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031165.html
   My bibliography  Save this article

Dynamic effects on modern renewable energy generation: The role of patents in clean energy technology

Author

Listed:
  • Zambrano-Monserrate, Manuel A.
  • Soto, Gonzalo Hernández
  • Ahakwa, Isaac
  • Manigandan, Palanisamy

Abstract

The shift to renewable energy is essential for addressing climate change and reducing reliance on fossil fuels. This paper analyzes the relationship between patent applications for renewable energy technologies and clean energy production in 45 countries from 2000 to 2019. Using a System Generalized Method of Moments Panel Vector Autoregressive (GMM-PVAR) model, Impulse Response Functions (IRFs), and Granger causality tests, the findings show that a shock to renewable energy patents does not immediately affect clean energy production. However, a temporary decline occurs in the second period, followed by gradual increases that stabilize in the long run. This suggests a delayed but sustained impact of innovation on energy generation due to the time required for technology implementation and infrastructure adaptation. Bidirectional causality between patents and energy production reveals a feedback loop, where innovation drives energy development, and increased energy production fosters further advancements. Additionally, GDP per capita, foreign direct investment, political stability, and trade openness significantly affect clean energy production. Political stability positively influences long-term renewable energy generation, while GDP and trade openness show short-term fluctuations before stabilizing. These findings highlight the evolving nature of the renewable energy sector and the critical role of innovation and economic factors in driving growth.

Suggested Citation

  • Zambrano-Monserrate, Manuel A. & Soto, Gonzalo Hernández & Ahakwa, Isaac & Manigandan, Palanisamy, 2024. "Dynamic effects on modern renewable energy generation: The role of patents in clean energy technology," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031165
    DOI: 10.1016/j.energy.2024.133340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awijen, Haithem & Belaïd, Fateh & Zaied, Younes Ben & Hussain, Nazim & Lahouel, Béchir Ben, 2022. "Renewable energy deployment in the MENA region: Does innovation matter?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    2. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    3. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    4. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    5. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers 09/02, Institute for Fiscal Studies.
    6. Michael R. M. Abrigo & Inessa Love, 2016. "Estimation of panel vector autoregression in Stata," Stata Journal, StataCorp LP, vol. 16(3), pages 778-804, September.
    7. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    8. Khezri, Mohsen & Heshmati, Almas & Khodaei, Mehdi, 2021. "The role of R&D in the effectiveness of renewable energy determinants: A spatial econometric analysis," Energy Economics, Elsevier, vol. 99(C).
    9. Zambrano-Monserrate, Manuel A., 2024. "Mineral import behavior in response to shocks: A nonlinear perspective," Research in Economics, Elsevier, vol. 78(1), pages 14-24.
    10. Chu, Lan Khanh & Ghosh, Sudeshna & Doğan, Buhari & Nguyen, Nam Hoai & Shahbaz, Muhammad, 2023. "Energy security as new determinant of renewable energy: The role of economic complexity in top energy users," Energy, Elsevier, vol. 263(PC).
    11. Qi, Xiaoyan & Guo, Yanshan & Guo, Pibin & Yao, Xilong & Liu, Xiuli, 2022. "Do subsidies and R&D investment boost energy transition performance? Evidence from Chinese renewable energy firms," Energy Policy, Elsevier, vol. 164(C).
    12. Zhang, Yue & Akram, Rabia & Ren, Siyu & Rehman, Mubeen Abdur & Abbas, Shujaat, 2023. "Determinants of sustainable energy in OECD countries: Role of technology and financial resources," Resources Policy, Elsevier, vol. 87(PB).
    13. Svenja Jarchow & Andrea Röhm, 2019. "Patent-based investment funds: from invention to innovation," The Journal of Technology Transfer, Springer, vol. 44(2), pages 404-433, April.
    14. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    15. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    16. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    17. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    18. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    19. Abban, Abdul Rashid & Hasan, Mohammad Zahid, 2021. "Revisiting the determinants of renewable energy investment - New evidence from political and government ideology," Energy Policy, Elsevier, vol. 151(C).
    20. Akintande, Olalekan J. & Olubusoye, Olusanya E. & Adenikinju, Adeola F. & Olanrewaju, Busayo T., 2020. "Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa," Energy, Elsevier, vol. 206(C).
    21. Usman, Muhammad & Jahanger, Atif & Makhdum, Muhammad Sohail Amjad & Balsalobre-Lorente, Daniel & Bashir, Adnan, 2022. "How do financial development, energy consumption, natural resources, and globalization affect Arctic countries' economic growth and environmental quality? An advanced panel data simulation," Energy, Elsevier, vol. 241(C).
    22. Alexiou, Constantinos, 2023. "Gauging the impact of the strength of patent systems on renewable energy consumption," Renewable Energy, Elsevier, vol. 210(C), pages 431-439.
    23. BELAÏD, Fateh & Elsayed, Ahmed H. & Omri, Anis, 2021. "Key drivers of renewable energy deployment in the MENA Region: Empirical evidence using panel quantile regression," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 225-238.
    24. Stephen R. Bond, 2002. "Dynamic panel data models: a guide to micro data methods and practice," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 141-162, August.
    25. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    26. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    27. Čeh Časni Anita & Dumičić Ksenija & Tica Josip, 2016. "The Panel VAR Approach to Modelling the Housing Wealth Effect: Evidence from selected European post-transition economies," Naše gospodarstvo/Our economy, Sciendo, vol. 62(4), pages 23-32, December.
    28. Li, Songran & Shao, Qinglong, 2021. "Exploring the determinants of renewable energy innovation considering the institutional factors: A negative binomial analysis," Technology in Society, Elsevier, vol. 67(C).
    29. Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    30. Shahid Iqbal & Ying Wang & Sharafat Ali & Nabila Amin & Shaheen Kausar, 2024. "Asymmetric Determinants of Renewable Energy Production in Pakistan: Do Economic Development, Environmental Technology, and Financial Development Matter?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 4097-4114, March.
    31. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    32. Marra, Alessandro & Colantonio, Emiliano, 2023. "On public policies in the energy transition: Evidence on the role of socio-technical regimes for renewable technologies," Energy Economics, Elsevier, vol. 128(C).
    33. Yang, Xiaolei & He, Lingyun & Xia, Yufei & Chen, Yufeng, 2019. "Effect of government subsidies on renewable energy investments: The threshold effect," Energy Policy, Elsevier, vol. 132(C), pages 156-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zambrano-Monserrate, Manuel A., 2024. "Mineral import behavior in response to shocks: A nonlinear perspective," Research in Economics, Elsevier, vol. 78(1), pages 14-24.
    2. López-Mendoza, Héctor & González-Álvarez, María A. & Montañés, Antonio, 2024. "Assessing the effectiveness of international government responses to the COVID-19 pandemic," Economics & Human Biology, Elsevier, vol. 52(C).
    3. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    4. Charles Shaaba Saba & Nicholas Ngepah, 2022. "ICT Diffusion, Industrialisation and Economic Growth Nexus: an International Cross-country Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(3), pages 2030-2069, September.
    5. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    6. Carfora, A. & Pansini, R.V. & Scandurra, G., 2021. "The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects," Energy Policy, Elsevier, vol. 149(C).
    7. Ryan H. Murphy & Colin O’Reilly, 2019. "Applying panel vector autoregression to institutions, human capital, and output," Empirical Economics, Springer, vol. 57(5), pages 1633-1652, November.
    8. Eberhardt, Markus & Teal, Francis, 2008. "Modeling technology and technological change in manufacturing: how do countries differ?," MPRA Paper 10690, University Library of Munich, Germany.
    9. Chu, Lan Khanh & Ghosh, Sudeshna & Doğan, Buhari & Nguyen, Nam Hoai & Shahbaz, Muhammad, 2023. "Energy security as new determinant of renewable energy: The role of economic complexity in top energy users," Energy, Elsevier, vol. 263(PC).
    10. Ejike Udeogu & Shampa Roy-Mukherjee & Uzochukwu Amakom, 2021. "Does Increasing Product Complexity and Diversity Cause Economic Growth in the Long-Run? A GMM Panel VAR Evidence," SAGE Open, , vol. 11(3), pages 21582440211, August.
    11. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    12. Dimitrios Karamanis, 2022. "Defence partnerships, military expenditure, investment, and economic growth: an analysis in PESCO countries," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 173, Hellenic Observatory, LSE.
    13. Kumeka, Terver Theophilus & Uzoma-Nwosu, Damian Chidozie & David-Wayas, Maria Onyinye, 2022. "The effects of COVID-19 on the interrelationship among oil prices, stock prices and exchange rates in selected oil exporting economies," Resources Policy, Elsevier, vol. 77(C).
    14. Ferreira, Cândida, 2020. "Globalisation and Economic Growth: A Panel Data Approach," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 73(2), pages 187-236.
    15. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    16. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    17. Al-Jahwari, Salim Ahmed Said, 2021. "Does the Twin-Deficits doctrine apply to the Gulf Cooperation Council? A dynamic panel VAR-X model approach," MPRA Paper 111232, University Library of Munich, Germany.
    18. Bittencourt, Manoel, 2011. "Inflation and financial development: Evidence from Brazil," Economic Modelling, Elsevier, vol. 28(1), pages 91-99.
    19. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    20. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.