IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics036054422402913x.html
   My bibliography  Save this article

Study of ash deposition characteristics of photovoltaic arrays taking into account the effect of photovoltaic module spacing and its effect on output characteristics: Indoor experiment

Author

Listed:
  • Zheng, Chuanxiao
  • Lu, Hao
  • Zhao, Wenjun
  • Tuo, Huaxu
  • Xu, Chenyang
  • Wang, Hengyan

Abstract

The problem of ash deposition on the surface of photovoltaic (PV) arrays during actual operation seriously affects their power generation efficiency. Because traditional research does not consider the PV module spacing, it cannot reflect the actual PV array ash deposition problem. This study explored the influence of PV module spacing, combined with different tilt angles and inlet wind speeds, on the characteristics of ash deposition and power output of the PV array through indoor experiments. The study designed a set of experimental equipment for simulating the formation process of ash deposition on the surface of PV arrays and set up an experimental platform to measure the influence of ash deposition on the maximum output power (Pmax), open-circuit voltage (Uoc), and short-circuit current (Isc) of the PV modules. The findings indicate that as the tilt angle increases, the PV array experiences reduced ash deposition and increased output power. Conversely, higher inlet wind speeds lead to greater ash deposition and decreased output power. Moreover, widening the spacing between PV modules results in increased ash deposition and reduced output power. Notably, within the PV array, the front PV module accumulates more ash than the rear module, with larger particle sizes. These research findings have significant implications for optimizing PV array design and enhancing power generation efficiency.

Suggested Citation

  • Zheng, Chuanxiao & Lu, Hao & Zhao, Wenjun & Tuo, Huaxu & Xu, Chenyang & Wang, Hengyan, 2024. "Study of ash deposition characteristics of photovoltaic arrays taking into account the effect of photovoltaic module spacing and its effect on output characteristics: Indoor experiment," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422402913x
    DOI: 10.1016/j.energy.2024.133138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402913X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Huadong & Wang, Hui, 2022. "Numerical simulation of the dust particles deposition on solar photovoltaic panels and its effect on power generation efficiency," Renewable Energy, Elsevier, vol. 201(P1), pages 1111-1126.
    2. Dida, Mustapha & Boughali, Slimane & Bechki, Djamel & Bouguettaia, Hamza, 2020. "Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Yao, Wanxiang & Han, Xiao & Huang, Yu & Zheng, Zhimiao & Wang, Yan & Wang, Xiao, 2022. "Analysis of the influencing factors of the dust on the surface of photovoltaic panels and its weakening law to solar radiation — A case study of Tianjin," Energy, Elsevier, vol. 256(C).
    4. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    5. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    6. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    7. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    2. Kaiss, El-Cheikh Amer & Hassan, Noha M., 2024. "Optimizing the cleaning frequency of solar photovoltaic (PV) systems using numerical analysis and empirical models," Renewable Energy, Elsevier, vol. 228(C).
    3. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Li, Peidu & Luo, Yong & Xia, Xin & Shi, Wen & Zheng, Junqing & Liao, Zhouyi & Gao, Xiaoqing & Chang, Rui, 2024. "Advancing photovoltaic panel temperature forecasting: A comparative study of numerical simulation and machine learning in two types of PV power plant," Renewable Energy, Elsevier, vol. 237(PA).
    5. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    6. Han, Zunshi & Lu, Hao & Zhao, Wenjun, 2024. "Effect of different PV modules surface energies and surface types on the particle deposition characteristics and PV efficiency," Renewable Energy, Elsevier, vol. 237(PB).
    7. Daniel Efurosibina Attoye & Timothy O. Adekunle & Kheira Anissa Tabet Aoul & Ahmed Hassan & Samuel Osekafore Attoye, 2018. "A Conceptual Framework for a Building Integrated Photovoltaics (BIPV) Educative-Communication Approach," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    8. Yao, Wanxiang & Xu, Ai & Kong, Xiangru & Wang, Yan & Li, Xianli & Gao, Weijun, 2024. "Analysis of dust deposition law at the micro level and its impact on the annual performance of photovoltaic modules," Energy, Elsevier, vol. 306(C).
    9. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    10. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    11. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    12. Galal Borham Wereda & Ibrahim Mohamed Diaaeldin & Othman A. M. Omar & Mahmoud A. Attia & Ahmed O. Badr, 2025. "A Novel Optimization Approach Using Chaos Game Optimization Algorithm for Parameters Estimation of Photovoltaic Cells," Sustainability, MDPI, vol. 17(4), pages 1-19, February.
    13. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    14. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    15. Al-Nimr, Moh'd.A. & Dawahdeh, Ahmad I., 2023. "A novel hybrid reverse osmosis and flash desalination system powered by solar photovoltaic/thermal collectors," Renewable Energy, Elsevier, vol. 218(C).
    16. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    17. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    18. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    19. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    20. Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422402913x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.