IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i9p1589-1601.html
   My bibliography  Save this article

Evaluation of cloudiness/haziness factor for composite climate

Author

Listed:
  • Singh, H.N.
  • Tiwari, G.N.

Abstract

In this communication, an attempt has been made to evaluate the cloudiness/haziness factor for the composite climate of New Delhi (latitude: 28.58° N; longitude: 77.02° E; elevation: 216 m above msl). To estimate the hourly variation of beam and diffuse radiation on a horizontal surface for any day, atmospheric transmittances for beam and diffuse radiation have been introduced to take into account the uncertain behaviour of atmospheric conditions. For the present study, the hourly data of global and diffuse solar radiation on a horizontal surface for a period of 10 years (1989–1998) have been used and analyzed using linear regression analysis. The data have been obtained from the Indian Meteorological Department, Pune, India. It has been observed that there is about 15% maximum deviation between predicted and observed values of hourly varying beam and diffuse radiation for clear (blue sky) weather condition.

Suggested Citation

  • Singh, H.N. & Tiwari, G.N., 2005. "Evaluation of cloudiness/haziness factor for composite climate," Energy, Elsevier, vol. 30(9), pages 1589-1601.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:9:p:1589-1601
    DOI: 10.1016/j.energy.2004.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaushal, Aayush & Varun, 2010. "Solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 446-453, January.
    2. Singh, D.B., 2018. "Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still," Energy, Elsevier, vol. 148(C), pages 546-560.
    3. P. Barnwal & G. N. Tiwari, 2008. "Life cycle energy metrics and CO 2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 3(3), pages 203-220, July.
    4. Tiwari, Arvind & Barnwal, P. & Sandhu, G.S. & Sodha, M.S., 2009. "Energy metrics analysis of hybrid - photovoltaic (PV) modules," Applied Energy, Elsevier, vol. 86(12), pages 2615-2625, December.
    5. Chel, Arvind & Tiwari, G.N., 2011. "A case study of a typical 2.32Â kWP stand-alone photovoltaic (SAPV) in composite climate of New Delhi (India)," Applied Energy, Elsevier, vol. 88(4), pages 1415-1426, April.
    6. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    7. Joshi, Anand S. & Tiwari, Arvind, 2007. "Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector," Renewable Energy, Elsevier, vol. 32(13), pages 2223-2241.
    8. Chel, Arvind & Tiwari, G.N., 2009. "Thermal performance and embodied energy analysis of a passive house - Case study of vault roof mud-house in India," Applied Energy, Elsevier, vol. 86(10), pages 1956-1969, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:9:p:1589-1601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.