IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224025271.html
   My bibliography  Save this article

Study on sound wave kinematic characteristics and temperature sensing mechanism during the warming process of loose coals

Author

Listed:
  • Kong, Biao
  • Zhong, Jianhui
  • Wei, Jianping
  • Lu, Wei
  • Sun, Xiaolei
  • Yang, Gongfan
  • Zhao, Xushuai
  • Ma, Lu

Abstract

Coal spontaneous combustion is a major threat for safe production. In order to achieve the application of sound wave technology to the monitoring and early warning of coal spontaneous combustion, clarify the propagation characteristics of sound waves in loose coal heating process, and illustrate the temperature sensing mechanism of the sound wave detection and early warning of coal spontaneous combustion, the present study built a test system of sound wave kinematic parameter for loose coals to survey the attenuation characteristics of sound wave propagation during loose coal heating. The elastic wave CT algorithm was used to reconstruct the sound wave velocity field, clarify the propagation path, and identify the temperature anomaly area. The results show that with the increase of temperature, the time for sound wave propagation reduces rapidly and then slowly, the velocity increases gradually, and the internal structure and pores of coals become enlarged. In the sound velocity field reconstructed on the basis of SIRT algorithm, the area with high value corresponds to the high temperature area of the coal, which better reflects the changes of the temperature anomaly area during coal heating.

Suggested Citation

  • Kong, Biao & Zhong, Jianhui & Wei, Jianping & Lu, Wei & Sun, Xiaolei & Yang, Gongfan & Zhao, Xushuai & Ma, Lu, 2024. "Study on sound wave kinematic characteristics and temperature sensing mechanism during the warming process of loose coals," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025271
    DOI: 10.1016/j.energy.2024.132753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224025271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yin & Wen, Hu & Guo, Jun & Jin, Yongfei & Fan, Shixing & Cai, Guobin & Liu, Renfei, 2023. "Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal," Energy, Elsevier, vol. 275(C).
    2. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    3. Liu, Jifan & Ma, Yankun & Kong, Biao & Bing, Yuxian & Yang, Tao & Zhao, Xushuai & Ma, Lu, 2024. "Study on the precursor characteristics of coal energy spontaneous combustion process using infrasound wave monitoring and warning," Energy, Elsevier, vol. 292(C).
    4. Kong, Biao & Wang, Enyuan & Lu, Wei & Li, Zenghua, 2019. "Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires," Energy, Elsevier, vol. 189(C).
    5. Ma, Dong & Qin, Botao & Zhong, Xiaoxing & Sheng, Peng & Yin, Chungen, 2023. "Effect of flammable gases produced from spontaneous smoldering combustion of coal on methane explosion in coal mines," Energy, Elsevier, vol. 279(C).
    6. Yuhui Wu & Xinzhi Zhou & Li Zhao & Chenlong Dong & Hailin Wang, 2021. "A Method for Reconstruction of Boiler Combustion Temperature Field Based on Acoustic Tomography," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, September.
    7. Tang, Yan & Hou, Fei & Zhong, Xiaoxing & Huang, Anchi & Jia, Xinyong & Peng, Bin, 2023. "Combination of heat energy extraction and fire control in underground high-temperature zones of coal fire areas," Energy, Elsevier, vol. 278(C).
    8. Chen, Jian & Lu, Yi & Tang, Guoxin & Yang, Yuxuan & Shao, Shuzhen & Ding, Yangwei, 2023. "Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Liyang & Tan, Bo & Fan, Long & Wang, Haiyan & Li, Xiaomeng & Lu, Wei & Jiang, Yuangang, 2024. "Comparison and analysis of spontaneous combustion control between coal storage silos and biomass silos," Energy, Elsevier, vol. 286(C).
    2. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    3. Fang, Xiyang & Tan, Bo & Wang, Haiyan & Wang, Feiran & Li, Tianze & Wan, Bo & Xu, Changfu & Qi, Qingjie, 2024. "Experimental study on the displacement effect and inerting differences of inert gas in loose broken coal," Energy, Elsevier, vol. 289(C).
    4. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    5. Tian, Siyu & Qin, Botao & Ma, Dong & Zhou, Qigeng & Luo, Zhongzheng, 2023. "Suppressive effects of alkali metal salt modified dry water material on methane-air explosion," Energy, Elsevier, vol. 285(C).
    6. Li, Purui & Yang, Yongliang & Zhao, Xiaohao & Li, Jinhu & Yang, Jingjing & Zhang, Yifan & Yan, Qi & Shen, Chang, 2023. "Spontaneous combustion and oxidation kinetic characteristics of alkaline-water-immersed coal," Energy, Elsevier, vol. 263(PE).
    7. Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
    8. Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
    9. Zhen Liu & Peng Hu & He Yang & Wenzhi Yang & Qingbo Gu, 2022. "Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    10. Nie, Wen & Cai, Yuankun & Wang, Luyao & Liu, Qiang & Jiang, Chenwang & Hua, Yun & Cheng, Chuanxing & Zhang, Haonan, 2024. "Coupled diffusion law of windflow-gas-dust in tunnel energy extraction processes and the location of optimal pollution control exhaust duct," Energy, Elsevier, vol. 304(C).
    11. Gao, Fei & Bai, Qihui & Jia, Zhe & Zhang, Xun & Li, Yingdi, 2024. "Influence and inerting mechanism of inert gas atmospheres on the characteristics of oxidative spontaneous combustion in coal," Energy, Elsevier, vol. 293(C).
    12. Liu, Jifan & Ma, Yankun & Kong, Biao & Bing, Yuxian & Yang, Tao & Zhao, Xushuai & Ma, Lu, 2024. "Study on the precursor characteristics of coal energy spontaneous combustion process using infrasound wave monitoring and warning," Energy, Elsevier, vol. 292(C).
    13. Lingna Zhong & Juan Zhang & Yanming Ding, 2020. "Energy Utilization of Algae Biomass Waste Enteromorpha Resulting in Green Tide in China: Pyrolysis Kinetic Parameters Estimation Based on Shuffled Complex Evolution," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
    14. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    15. Hou, Fei & Zhong, Xiaoxing & Zanoni, Marco A.B. & Rashwan, Tarek L. & Torero, José L., 2024. "Multi-step scheme and thermal effects of coal smouldering under various oxygen-limited conditions," Energy, Elsevier, vol. 299(C).
    16. Kong, Xiangguo & He, Di & Liu, Xianfeng & Wang, Enyuan & Li, Shugang & Liu, Ting & Ji, Pengfei & Deng, Daiyu & Yang, Songrui, 2022. "Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process," Energy, Elsevier, vol. 242(C).
    17. Zhang, Xun & Liang, Huimin & Lu, Bing & Qiao, Ling & Huang, Ge & Yu, Chen & Zou, Jiahui, 2024. "Correlation and stage change of key groups and thermal effects of spontaneous coal combustion due to long-term ultraviolet illumination," Energy, Elsevier, vol. 293(C).
    18. Qirong Qiu & Wanting Zhou & Qing Zhao & Shi Liu, 2022. "An Explicable Neighboring-Pixel Reconstruction Algorithm for Temperature Distribution by Acoustic Tomography," Energies, MDPI, vol. 15(9), pages 1-16, April.
    19. Zhang, Xun & Lu, Bing & Qiao, Ling & Ding, Cong, 2023. "Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals," Energy, Elsevier, vol. 285(C).
    20. Xu, Yong-liang & Huo, Xing-wang & Wang, Lan-yun & Gong, Xiang-jun & Lv, Ze-cheng & Zhao, Tian, 2024. "Spontaneous combustion properties and quantitative characterization of catastrophic temperature for pre-oxidized broken coal under stress," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224025271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.