IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022989.html
   My bibliography  Save this article

Digital economy solutions towards carbon neutrality: The critical role of energy efficiency and energy structure transformation

Author

Listed:
  • Huang, Chenchen
  • Lin, Boqiang

Abstract

Reducing carbon emissions is a crucial way to achieve sustainable development. Whether the digital economy helps or makes it harder to cut emissions is a matter of debate. This paper proposes a new digital economy index based on the entropy weight method. The two-way fixed effect panel model is used to analyze the data of 30 provinces in China from 2011 to 2021. The results suggest that (1) The digital economy can significantly reduce carbon emissions. (2) Improving energy efficiency and promoting energy structure transformation are two essential mechanisms for carbon reduction in the digital economy. (3) There is heterogeneity in the impact of the digital economy on carbon emissions. The digital economy significantly reduces carbon emissions from coal but does not significantly impact carbon emissions from other sources. Moreover, the emission reduction effect of the digital economy is related to regional energy endowment, intelligent manufacturing level, and industrial agglomeration level. This paper provides new empirical evidence for clarifying the relationship between the digital economy and carbon emissions and provides policy implications for promoting the realization of carbon neutrality goals.

Suggested Citation

  • Huang, Chenchen & Lin, Boqiang, 2024. "Digital economy solutions towards carbon neutrality: The critical role of energy efficiency and energy structure transformation," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022989
    DOI: 10.1016/j.energy.2024.132524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Liang, Lin & Li, Yan, 2023. "How does government support promote digital economy development in China? The mediating role of regional innovation ecosystem resilience," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Zou, Jing & Deng, Xiaojun, 2022. "To inhibit or to promote: How does the digital economy affect urban migrant integration in China?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    5. Wang, Jianda & Wang, Bo & Dong, Kangyin & Dong, Xiucheng, 2022. "How does the digital economy improve high-quality energy development? The case of China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Zhu, Yuke & Lan, Mudan, 2023. "Digital economy and carbon rebound effect: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 126(C).
    7. Malin Song & Heting Pan & Michael Vardanyan & Zhiyang Shen, 2023. "Evaluating the energy efficiency-enhancing potential of the digital economy: Evidence from China," Post-Print hal-04277444, HAL.
    8. Ziyu Meng & Wen-Bo Li & Chaofan Chen & Chenghua Guan, 2023. "Carbon Emission Reduction Effects of the Digital Economy: Mechanisms and Evidence from 282 Cities in China," Land, MDPI, vol. 12(4), pages 1-21, March.
    9. Chen, Pengyu & Dagestani, Abd Alwahed, 2023. "Urban planning policy and clean energy development Harmony- evidence from smart city pilot policy in China," Renewable Energy, Elsevier, vol. 210(C), pages 251-257.
    10. Du, Minzhe & Wu, Fenger & Ye, Danfeng & Zhao, Yating & Liao, Liping, 2023. "Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 124(C).
    11. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    12. Du, Yanan & Zhou, Jianping & Bai, Jiancheng & Cao, Yujia, 2023. "Breaking the resource curse: The perspective of improving carbon emission efficiency based on digital infrastructure construction," Resources Policy, Elsevier, vol. 85(PB).
    13. Zare Banadkouki, Mohammad Reza, 2023. "Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS," Energy, Elsevier, vol. 279(C).
    14. Huang, Yongming & Haseeb, Mohammad & Usman, Muhammad & Ozturk, Ilhan, 2022. "Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries?," Technology in Society, Elsevier, vol. 68(C).
    15. Huang, Junbing & Wang, Yajun & Luan, Bingjiang & Zou, Hong & Wang, Jun, 2023. "The energy intensity reduction effect of developing digital economy: Theory and empirical evidence from China," Energy Economics, Elsevier, vol. 128(C).
    16. Lin, Boqiang & Jia, Zhijie, 2019. "What will China's carbon emission trading market affect with only electricity sector involvement? A CGE based study," Energy Economics, Elsevier, vol. 78(C), pages 301-311.
    17. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    19. Wang, Bo & Wang, Jianda & Dong, Kangyin & Dong, Xiucheng, 2023. "Is the digital economy conducive to the development of renewable energy in Asia?," Energy Policy, Elsevier, vol. 173(C).
    20. Li, Jiaman & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "How does natural resource dependence influence carbon emissions? The role of environmental regulation," Resources Policy, Elsevier, vol. 80(C).
    21. Huang, Yongming & Zhang, Yanan, 2023. "Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence from global manufacturing production-based emissions," Ecological Economics, Elsevier, vol. 205(C).
    22. Ma, Ning & Sun, Wenli & Wang, Ze & Li, HuaJiao & Ma, Xintong & Sun, Haocheng, 2023. "The effects of different forms of FDI on the carbon emissions of multinational enterprises: A complex network approach," Energy Policy, Elsevier, vol. 181(C).
    23. Wang, Ping & Han, Wei & Kumail Abbas Rizvi, Syed & Naqvi, Bushra, 2022. "Is Digital Adoption the way forward to Curb Energy Poverty?," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    24. Qianqian Wan & Daqian Shi, 2022. "Smarter and Cleaner: The Digital Economy and Environmental Pollution," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(6), pages 59-85, November.
    25. Ma, Ruiyang & Lin, Boqiang, 2023. "Digitalization and energy-saving and emission reduction in Chinese cities: Synergy between industrialization and digitalization," Applied Energy, Elsevier, vol. 345(C).
    26. Wang, Qiang & Hu, Sailan & Li, Rongrong, 2024. "Could information and communication technology (ICT) reduce carbon emissions? The role of trade openness and financial development," Telecommunications Policy, Elsevier, vol. 48(3).
    27. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    28. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    29. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuao Sun & Sheeraz Ahmed, 2024. "Navigating and Overcoming Barriers to Digital Energy Transition for Carbon Neutrality in China," Energies, MDPI, vol. 17(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Huang, Chenchen & Lin, Boqiang, 2024. "How digital economy index selection and model uncertainty will affect energy green transition," Energy Economics, Elsevier, vol. 136(C).
    3. Zhao, Dengfeng & Lin, Jingting & Bashir, Muhammad Adnan, 2024. "Analyze the effect of energy efficiency, natural resources, and the digital economy on ecological footprint in OCED countries: The mediating role of renewable energy," Resources Policy, Elsevier, vol. 95(C).
    4. Dong, Kangyin & Liu, Yang & Wang, Jianda & Dong, Xiucheng, 2024. "Is the digital economy an effective tool for decreasing energy vulnerability? A global case," Ecological Economics, Elsevier, vol. 216(C).
    5. Huang, Chenchen & Lin, Boqiang, 2023. "Promoting decarbonization in the power sector: How important is digital transformation?," Energy Policy, Elsevier, vol. 182(C).
    6. Pingkuo Liu & Jiahao Wu, 2023. "Game Analysis on Energy Enterprises’ Digital Transformation—Strategic Simulation for Guiding Role, Leading Role and Following Role," Sustainability, MDPI, vol. 15(13), pages 1-33, June.
    7. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    8. Karlilar, Selin & Balcilar, Mehmet & Emir, Firat, 2023. "Environmental sustainability in the OECD: The power of digitalization, green innovation, renewable energy and financial development," Telecommunications Policy, Elsevier, vol. 47(6).
    9. Huang, Junbing & Wang, Yajun & Luan, Bingjiang & Zou, Hong & Wang, Jun, 2023. "The energy intensity reduction effect of developing digital economy: Theory and empirical evidence from China," Energy Economics, Elsevier, vol. 128(C).
    10. Zhao, Xiaoyang & Weng, Zongyuan, 2024. "Digital dividend or divide: The digital economy and urban entrepreneurial activity," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    11. Xuefeng Hou & Dianfeng Zhang & Liyuan Fu & Fu Zeng & Qing Wang, 2023. "Spatio-Temporal Evolution and Influencing Factors of Coupling Coordination Degree between Urban–Rural Integration and Digital Economy," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    12. Umair Kashif & Junguo Shi & Sihan Li & Qinqin Wu & Qiuya Song & Shanshan Dou & Mengjie Wei & Snovia Naseem, 2024. "Navigating the digital divide: unraveling the impact of ICT usage and supply on SO2 emissions in China’s Yangtze River Delta," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    13. Gao, Feng & He, Ziwen, 2024. "Digital economy, land resource misallocation and urban carbon emissions in Chinese resource-based cities," Resources Policy, Elsevier, vol. 91(C).
    14. Yu, Hongyang & Wang, Jinchao & Xu, Jiajun, 2023. "Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China," Energy, Elsevier, vol. 284(C).
    15. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).
    16. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    17. Siliang Guo & Yanhua Diao & Junliang Du, 2022. "Coupling Coordination Measurement and Evaluation of Urban Digitalization and Green Development in China," IJERPH, MDPI, vol. 19(22), pages 1-32, November.
    18. Du, Zhili & Xu, Jie & Lin, Boqiang, 2024. "What does the digital economy bring to household carbon emissions? – From the perspective of energy intensity," Applied Energy, Elsevier, vol. 370(C).
    19. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    20. Wang, Zongrun & Cao, Xuxin & Ren, Xiaohang & Gozgor, Giray, 2024. "Digital finance and the energy transition: Evidence from Chinese prefecture-level cities," Global Finance Journal, Elsevier, vol. 61(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.