IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224014002.html
   My bibliography  Save this article

Numerical modeling of air ejectors covering supersonic, subsonic and closed-port operations

Author

Listed:
  • Schillaci, Eugenio
  • Vera, Jordi
  • Oliet, Carles
  • Vemula, Jagadish Babu
  • Duponcheel, Matthieu
  • Bartosiewicz, Yann

Abstract

The physics and modeling of air ejectors in on- and off-design conditions have been extensively addressed in the past, reaching a good level of maturity. However, to achieve a robust model at system scale integrating an ejector, there is a need for developing 0D models suitable to tackle abnormal functioning modes, such as cases where the ejector works in subsonic conditions, reverse flows, or closed ports. Based on state-of-the-art models, a new 0D model has been built in the current work, where proper subroutine implementations allow covering normal and abnormal operations of convergent nozzle ejectors. The current research also focuses on understanding the physical behavior of air ejectors for aeronautical applications. In this regard, CFD-RANS simulations are used to perform model verification and calibration as well as to gain knowledge of the whole operational envelope. The regimes reproduced by the 0D model, and validated by CFD, cover the normal operating mode with different choking regimes, the occurrence of a subsonic primary flow, and the closed secondary port case. Additional cases are run to assess other features of the ejector behavior, such as the influence of geometrical properties on the choking mechanism and the impact of thermal effects.

Suggested Citation

  • Schillaci, Eugenio & Vera, Jordi & Oliet, Carles & Vemula, Jagadish Babu & Duponcheel, Matthieu & Bartosiewicz, Yann, 2024. "Numerical modeling of air ejectors covering supersonic, subsonic and closed-port operations," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014002
    DOI: 10.1016/j.energy.2024.131627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Metsue, Antoine & Debroeyer, Romain & Poncet, Sébastien & Bartosiewicz, Yann, 2022. "An improved thermodynamic model for supersonic real-gas ejectors using the compound-choking theory," Energy, Elsevier, vol. 238(PB).
    2. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    3. Wang, Kai & Wang, Lei & Gao, Rui, 2023. "An extended mechanism model of gaseous ejectors," Energy, Elsevier, vol. 264(C).
    4. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    5. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kai & Wang, Lei & Gao, Rui, 2023. "An extended mechanism model of gaseous ejectors," Energy, Elsevier, vol. 264(C).
    2. Metsue, Antoine & Debroeyer, Romain & Poncet, Sébastien & Bartosiewicz, Yann, 2022. "An improved thermodynamic model for supersonic real-gas ejectors using the compound-choking theory," Energy, Elsevier, vol. 238(PB).
    3. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    4. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    5. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    6. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    7. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    8. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    9. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    10. Zhou, Yifan & Chen, Guangming & Hao, Xinyue & Gao, Neng & Volovyk, Oleksii, 2023. "Working mechanism and characteristics analysis of a novel configuration of a supersonic ejector," Energy, Elsevier, vol. 278(PB).
    11. Jorge de Oliveira Marum, Victor & Reis, Lívia Bueno & Maffei, Felipe Silva & Ranjbarzadeh, Shahin & Korkischko, Ivan & Gioria, Rafael dos Santos & Meneghini, Julio Romano, 2021. "Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling," Energy, Elsevier, vol. 220(C).
    12. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
    13. Chen, Jikai & Sun, Mingbo & Li, Peibo & An, Bin & Jiaoru, Wang & Li, Menglei, 2024. "Effects of excess oxidizer coefficient on RBCC engine performance in ejector mode: A theoretical investigation," Energy, Elsevier, vol. 289(C).
    14. Van den Berghe, Jan & Dias, Bruno R.B. & Bartosiewicz, Yann & Mendez, Miguel A., 2023. "A 1D model for the unsteady gas dynamics of ejectors," Energy, Elsevier, vol. 267(C).
    15. Zhang, Shaozhi & Luo, Jielin & Wang, Qin & Chen, Guangming, 2018. "Step utilization of energy with ejector in a heat driven freeze drying system," Energy, Elsevier, vol. 164(C), pages 734-744.
    16. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    17. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    18. Zhu, Jingwei & Botticella, Francesco & Elbel, Stefan, 2018. "Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles," Energy, Elsevier, vol. 157(C), pages 718-733.
    19. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    20. Ramesh, A.S. & Sekhar, S. Joseph, 2018. "Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector," Energy, Elsevier, vol. 164(C), pages 1097-1113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.