IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224015081.html
   My bibliography  Save this article

Molecular structure of coal macerals and thermal response behavior of their chemical bonds obtained by structural characterizations and molecular dynamics simulations

Author

Listed:
  • Kuang, Yucen
  • Xie, Wenhao
  • Wu, Hongyan
  • Liu, Xiaoqian
  • Sher, Farooq
  • Qiu, Shuxing
  • Dang, Jie
  • Zhang, Shengfu

Abstract

Clarifying the microscale reaction mechanism of macerals is crucial for achieving efficient thermal utilization of coals. Herein, we analysed the chemical structures of two coals used in coking for their macerals employing 13C NMR, FTIR, and XPS to build molecules. The pyrolysis behaviours of coals and their macerals were accessed through molecular dynamics of calculating chemical bond characteristics. Results show that inertinite with higher maturity is rich in aromatic, vitrinite with stronger thermal-reactivity is rich in aliphatic, and macerals of coking and gas coal have more advantages in hydrocarbon generation and branch-chain development, respectively. Based on the validated and optimized molecules containing C, H, O, and N elements, it is found that not only the bond lengths of the longest and shortest in macerals from gas coal are greater than those from coking coal, but the thermal response of heteroatom bonds in the former is almost twice that of the later. Moreover, vitrinite and inertinite of coking coal have N–H cleavage to produce active hydrogen in the late stage of bond dissociation, while gas coal lacks this feature. These explain why the pyrolytic properties of different coals and their macerals have variability, guiding the rational selection of coal-based feedstock for industry.

Suggested Citation

  • Kuang, Yucen & Xie, Wenhao & Wu, Hongyan & Liu, Xiaoqian & Sher, Farooq & Qiu, Shuxing & Dang, Jie & Zhang, Shengfu, 2024. "Molecular structure of coal macerals and thermal response behavior of their chemical bonds obtained by structural characterizations and molecular dynamics simulations," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224015081
    DOI: 10.1016/j.energy.2024.131735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Xiangyu & Liu, Yang & Wang, Mingdeng & Li, Chao & Zheng, Yajie & Liu, Yang & Zhong, Xiangyun & Xu, Guozhong & Zhang, Yaru & Feng, Yifei & Bai, Bin & Bai, Jinfeng, 2023. "Production of highly reactive cokes by adding alkali metals and alkaline earth metals and their effect mechanism," Energy, Elsevier, vol. 284(C).
    2. Phiri, Zebron & Everson, Raymond C. & Neomagus, Hein W.J.P. & Wood, Barry J., 2018. "Transformation of nitrogen functional forms and the accompanying chemical-structural properties emanating from pyrolysis of bituminous coals," Applied Energy, Elsevier, vol. 216(C), pages 414-427.
    3. Kuang, Yucen & Jiang, Tao & Wu, Longqi & Liu, Xiaoqian & Yang, Xuke & Sher, Farooq & Wei, Zhifang & Zhang, Shengfu, 2023. "High-temperature rheological behavior and non-isothermal pyrolysis mechanism of macerals separated from different coals," Energy, Elsevier, vol. 277(C).
    4. Chen, Yi-Feng & Su, Sheng & Zhang, Liang-Ping & Jiang, Long & Qing, Meng-Xia & Chi, Huan-Ying & Ling, Peng & Han, Heng-Da & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2021. "Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study," Energy, Elsevier, vol. 222(C).
    5. Jiang, Bingyou & Ji, Ben & Yuan, Liang & Yu, Chang-Fei & Tao, Wenhan & Zhou, Yu & Wang, Haoyu & Wang, Xiao-Han & Liao, Maolin, 2023. "Experimental and molecular dynamics simulation study of the ionic liquids’ chain-length on wetting of bituminous coal," Energy, Elsevier, vol. 283(C).
    6. Lai, Aolin & Wang, Qunwei, 2024. "How coal de-capacity policy affects renewable energy development efficiency? Evidence from China," Energy, Elsevier, vol. 286(C).
    7. Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
    8. Xu, Tong & Wang, Chunbo & Hong, Dikun, 2023. "Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 285(C).
    9. Zhang, Nan & Zhang, Jianliang & Wang, Guangwei & Ning, Xiaojun & Meng, Fanyi & Li, Chuanhui & Ye, Lian & Wang, Chuan, 2022. "Physicochemical characteristics of three-phase products of low-rank coal by hydrothermal carbonization: experimental research and quantum chemical calculation," Energy, Elsevier, vol. 261(PB).
    10. Zhang, Nan & Wang, Guangwei & Yu, Chunmei & Zhang, Jianliang & Dang, Han & Zhang, Cuiliu & Ning, Xiaojun & Wang, Chuan, 2022. "Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization," Energy, Elsevier, vol. 238(PA).
    11. Wu, Junnian & Li, Xue & Jin, Rong, 2022. "The response of the industrial system to the interrelationship approaching to carbon neutrality of carbon sources and sinks from carbon metabolism: Coal chemical case study," Energy, Elsevier, vol. 261(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hao-Dong & Zhang, Hang & Wang, Jie-Ping & Dou, Jin-Xiao & Guo, Rui & Li, Guang-Yue & Liang, Ying-Hua & Yu, Jiang-long, 2024. "Construction of macromolecular model of coal based on deep learning algorithm," Energy, Elsevier, vol. 294(C).
    2. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    3. Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
    4. Zhao, Jingyu & Deng, Jun & Chen, Long & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation," Energy, Elsevier, vol. 181(C), pages 136-147.
    5. Zhang, Yi & Jiang, Bingyou & Zhao, Yang & Zheng, Yuannan & Wang, Shiju & Wang, Xiao-Han & Lu, Kunlun & Ren, Bo & Nie, Wen & Yu, Haiming & Liu, Zhuang & Xu, Shuo, 2024. "Synergistic effect of surfactants and nanoparticles on the wettability of coal: An experimental and simulation study," Energy, Elsevier, vol. 295(C).
    6. Jiang, Bingyou & Liu, Zhuang & Zhao, Yang & Zhang, Xiaoyi & Wang, Xiao-Han & Ji, Ben & Zhang, Yi & Huang, Jinshan, 2024. "Development of an eco-friendly dust suppressant based on modified pectin: experimental and theoretical investigations," Energy, Elsevier, vol. 289(C).
    7. Youying Mu & Chengzhuo Duan & Xin Li & Yongbo Wu, 2023. "A Monitoring Method for Corporate Environmental Performance Based on Data Fusion in China under the Double Carbon Target," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    8. Zhou, Banghao & Zhou, Qun & Yang, Kai & Xin, Haihui & Ran, Mei & Hou, Jin & Deng, Zhipeng & Qin, Botao, 2024. "Research on the wetting interface characteristics between water molecules and bituminous coal based on pore evolution and molecular dynamic theory," Energy, Elsevier, vol. 297(C).
    9. Li, Yukai & Feng, Dongdong & Sun, Shaozeng & Zhao, Yijun & Shang, Qi & Chen, Kun & Li, Bowen & Wu, Jiangquan, 2022. "Biomass-coal reburning: Competitive mechanism of gas-solid product activation coal char," Energy, Elsevier, vol. 261(PA).
    10. Zhang, Nan & Zhang, Jianliang & Wang, Guangwei & Ning, Xiaojun & Meng, Fanyi & Li, Chuanhui & Ye, Lian & Wang, Chuan, 2022. "Physicochemical characteristics of three-phase products of low-rank coal by hydrothermal carbonization: experimental research and quantum chemical calculation," Energy, Elsevier, vol. 261(PB).
    11. Chen, Wei & Liu, Jie & Peng, Wenqing & Zhao, Yanlin & Luo, Shilin & Wan, Wen & Wu, Qiuhong & Wang, Yuanzeng & Li, Shengnan & Tang, Xiaoyu & Zeng, Xiantao & Wu, Xiaofan & Zhou, Yu & Xie, Senlin, 2023. "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion," Energy, Elsevier, vol. 282(C).
    12. Florentina Paraschiv & Hannah Schmid & Marten Schmitz & Vivian Dünwald & Emma Groos, 2024. "The Interplay Between China’s Regulated and Voluntary Carbon Markets and Its Influence on Renewable Energy Development—A Literature Review," Energies, MDPI, vol. 17(22), pages 1-23, November.
    13. Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
    14. Hu, Lin & Guo, Xian-Hou & Wei, Xian-Yong & Liu, Fang-Jing & Xu, Mei-Ling & Liu, Tian-Long & Zhang, Feng-Bin, 2023. "Research on the influence of sequential isopropanolysis liquefaction on the composition of liquid tars and physicochemical structure evolution of renbei lignite," Energy, Elsevier, vol. 279(C).
    15. Yang, Yu & Kai, Reo & Watanabe, Hiroaki, 2024. "Reaction mechanism and light gas conversion in pyrolysis and oxidation of dimethyl ether (DME): A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 295(C).
    16. Shi, Chen & Liu, Xiangrong & Wu, Hao & Zhao, Shunsheng & Yang, Zaiwen, 2023. "Enhancements of mixed surfactants on Wucaiwan coal biodegradation by Nocardia mangyaensis," Energy, Elsevier, vol. 266(C).
    17. Yang, Jie & Liu, Xiangrong & Yang, Zaiwen & Zhao, Shunsheng, 2023. "Biodegradation of Dananhu low-rank coal by Planomicrobium huatugouensis: Target metabolites possessing degradation abilities and their biodegradation pathways," Energy, Elsevier, vol. 276(C).
    18. Zhou, Fangkezi & Pan, Yinghao & Wu, Jie & Xu, Chengzhen & Li, Xingchen, 2024. "The impact of green finance on renewable energy development efficiency in the context of energy security: Evidence from China," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 803-816.
    19. Tian, Bin & Zhao, Wanyi & Guo, Qingjie & Tian, Yuanyu, 2022. "A comprehensive understanding of synergetic effect and volatile interaction mechanisms during co-pyrolysis of rice husk and different rank coals," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224015081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.