IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014452.html
   My bibliography  Save this article

A two-layer energy management for islanded microgrid based on inverse reinforcement learning and distributed ADMM

Author

Listed:
  • Huang, Lei
  • Sun, Wei
  • Li, Qiyue
  • Mu, Daoming
  • Li, Weitao

Abstract

The development of a scheduling strategy for an islanded microgrid (IMG) is critical for ensuring the system’s stability and economic efficiency. Traditional scheduling strategies for IMGs predominantly utilize centralized management by the microgrid central controller (MGCC), which introduces a vulnerability to a single point of failure. To address this limitation, this paper presents a two-layer energy management strategy for IMGs based on the improved alternating direction method of multipliers (ADMM) and inverse reinforcement learning (IRL). First, the framework of the proposed strategy, comprising a scheduling layer and a real-time dispatch layer, is outlined. Next, the problem formulation of the scheduling layer is analyzed, and the proposed IRL-based management strategy for the energy storage system (ESS) is presented. Then, a distributed optimization algorithm based on the improved ADMM is proposed for the management of controllable distributed generators (CDGs) in the real-time dispatch layer. Lastly, the case study demonstrates the efficacy of the proposed strategy in diminishing MGCC dependency. The comparative analysis indicates that the proposed strategy outperforms existing scheduling strategies in terms of cost-effectiveness when the forecast error exceeds 3%. Moreover, in contrast to existing scheduling strategies, the proposed strategy mitigates the risk associated with a single point of failure.

Suggested Citation

  • Huang, Lei & Sun, Wei & Li, Qiyue & Mu, Daoming & Li, Weitao, 2024. "A two-layer energy management for islanded microgrid based on inverse reinforcement learning and distributed ADMM," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014452
    DOI: 10.1016/j.energy.2024.131672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    2. Tayab, Usman Bashir & Roslan, Mohd Azrik Bin & Hwai, Leong Jenn & Kashif, Muhammad, 2017. "A review of droop control techniques for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 717-727.
    3. L. Xiao & S. Boyd, 2006. "Optimal Scaling of a Gradient Method for Distributed Resource Allocation," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 469-488, June.
    4. Li, Li & Dong, Mi & Song, Dongran & Yang, Jian & Wang, Qibing, 2022. "Distributed and real-time economic dispatch strategy for an islanded microgrid with fair participation of thermostatically controlled loads," Energy, Elsevier, vol. 261(PB).
    5. Lin, Zhiyi & Song, Chunyue & Zhao, Jun & Yin, Huan, 2022. "Improved approximate dynamic programming for real-time economic dispatch of integrated microgrids," Energy, Elsevier, vol. 255(C).
    6. Huang, Lei & Sun, Wei & Li, Qiyue & Li, Weitao, 2023. "Distributed real-time economic dispatch for islanded microgrids with dynamic power demand," Applied Energy, Elsevier, vol. 342(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Lei & Sun, Wei & Li, Qiyue & Li, Weitao, 2023. "Distributed real-time economic dispatch for islanded microgrids with dynamic power demand," Applied Energy, Elsevier, vol. 342(C).
    2. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    3. Quynh T.T Tran & Eleonora Riva Sanseverino & Gaetano Zizzo & Maria Luisa Di Silvestre & Tung Lam Nguyen & Quoc-Tuan Tran, 2020. "Real-Time Minimization Power Losses by Driven Primary Regulation in Islanded Microgrids," Energies, MDPI, vol. 13(2), pages 1-17, January.
    4. Ingrid Hopley & Mehrdad Ghahramani & Asma Aziz, 2024. "Techno-Economic Factors Impacting the Intrinsic Value of Behind-the-Meter Distributed Storage," Sustainability, MDPI, vol. 16(23), pages 1-26, November.
    5. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    7. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    8. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    9. Elutunji Buraimoh & Innocent E. Davidson & Fernando Martinez-Rodrigo, 2019. "Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control," Energies, MDPI, vol. 12(20), pages 1-26, October.
    10. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    11. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    12. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    13. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    14. Paolo Tenti & Tommaso Caldognetto, 2023. "Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids," Energies, MDPI, vol. 16(5), pages 1-23, February.
    15. Andrea Simonetto & Hadi Jamali-Rad, 2016. "Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 172-197, January.
    16. Hwang Goh, Hui & Shi, Shuaiwei & Liang, Xue & Zhang, Dongdong & Dai, Wei & Liu, Hui & Yuong Wong, Shen & Agustiono Kurniawan, Tonni & Chen Goh, Kai & Leei Cham, Chin, 2022. "Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty," Applied Energy, Elsevier, vol. 327(C).
    17. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    18. William La Cruz, 2022. "A genetic algorithm with a self-reproduction operator to solve systems of nonlinear equations," Journal of Global Optimization, Springer, vol. 84(4), pages 1005-1032, December.
    19. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    20. Gabriel Nasser Doyle de Doile & Pedro Paulo Balestrassi & Miguel Castilla & Antonio Carlos Zambroni de Souza & Jaume Miret, 2023. "An Experimental Approach for Secondary Consensus Control Tuning for Inverter-Based Islanded Microgrids," Energies, MDPI, vol. 16(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.