IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224013598.html
   My bibliography  Save this article

Model construction and multi-objective performance optimization of a biodiesel-diesel dual-fuel engine based on CNN-GRU

Author

Listed:
  • Wang, Hechun
  • Hu, Deng
  • Yang, Chuanlei
  • Wang, Binbin
  • Duan, Baoyin
  • Wang, Yinyan

Abstract

To tackle the challenges of low efficiency and excessive NOx emissions in biodiesel-diesel dual-fuel engines, this paper presents an optimization method using the Pareto-multiple objective snake optimizer (Pareto-MOSO) to drive a convolutional neural network-gated recurrent unit (CNN-GRU). In the Pareto-MOSO, brake specific fuel consumption (BSFC), NOx, Soot, and CO are optimized by changing the engine control parameters, including injection timing (Tinject), engine speed (n), biodiesel blending ratio, torque (Ttorque), exhaust gas recirculation (EGR rate), intake pressure (Pin), and rail pressure (Prail). The experiment generates training data for CNN-GRU and verifies the accuracy of the Pareto-MOSO optimization results. The findings suggest that the optimized engine exhibits a balanced correlation between economy and emissions under propulsion characteristics. Furthermore, the NOx emissions are all in accordance with the IMO Tier III emission regulations. Under the rated condition, Scheme 2 demonstrates a significant reduction of 76.57 % in NOx emissions. However, this optimization has resulted in a 1.63 % increase in BSFC compared to its pre-optimized state. Therefore, the adoption of suitable control strategies proves advantageous in addressing the trade-off between economy and emissions of engines.

Suggested Citation

  • Wang, Hechun & Hu, Deng & Yang, Chuanlei & Wang, Binbin & Duan, Baoyin & Wang, Yinyan, 2024. "Model construction and multi-objective performance optimization of a biodiesel-diesel dual-fuel engine based on CNN-GRU," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224013598
    DOI: 10.1016/j.energy.2024.131586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santhosh, K. & Kumar, G.N., 2021. "Effect of injection time on combustion, performance and emission characteristics of direct injection CI engine fuelled with equi-volume of 1-hexanol/diesel blends," Energy, Elsevier, vol. 214(C).
    2. Liu, Jinlong & Dumitrescu, Cosmin E., 2019. "Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition," Applied Energy, Elsevier, vol. 248(C), pages 95-103.
    3. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    4. Öztürk, Erkan & Can, Özer, 2022. "Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend," Energy, Elsevier, vol. 244(PB).
    5. Erdoğan, Sinan & Aydın, Selman & Balki, Mustafa Kemal & Sayin, Cenk, 2020. "Operational evaluation of thermal barrier coated diesel engine fueled with biodiesel/diesel blend by using MCDM method base on engine performance, emission and combustion characteristics," Renewable Energy, Elsevier, vol. 151(C), pages 698-706.
    6. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. AE Atabani & M Mekaoussi & Gediz Uguz & Orhan Arpa & Abdulkadir Ayanoglu & Sutha Shobana, 2020. "Evaluation, characterization, and engine performance of complementary fuel blends of butanol–biodiesel–diesel from Aleurites moluccanus as potential alternative fuels for CI engines," Energy & Environment, , vol. 31(5), pages 755-784, August.
    8. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    9. Ali Alahmer & Hegazy Rezk & Wail Aladayleh & Ahmad O. Mostafa & Mahmoud Abu-Zaid & Hussein Alahmer & Mohamed R. Gomaa & Amel A. Alhussan & Rania M. Ghoniem, 2022. "Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement," Mathematics, MDPI, vol. 10(3), pages 1-29, January.
    10. Ali Alahmer & Hussein Alahmer & Ahmed Handam & Hegazy Rezk, 2022. "Environmental Assessment of a Diesel Engine Fueled with Various Biodiesel Blends: Polynomial Regression and Grey Wolf Optimization," Sustainability, MDPI, vol. 14(3), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiqiong Huang & Jie Tian & Jiangtao Li & Dongli Tan, 2022. "Effects of Different Exhaust Gas Recirculation (EGR) Rates on Combustion and Emission Characteristics of Biodiesel–Diesel Blended Fuel Based on an Improved Chemical Mechanism," Energies, MDPI, vol. 15(11), pages 1-23, June.
    2. Hu, Deng & Wang, Hechun & Wang, Binbin & Shi, Mingwei & Duan, Baoyin & Wang, Yinyan & Yang, Chuanlei, 2022. "Calibration of 0-D combustion model applied to dual-fuel engine," Energy, Elsevier, vol. 261(PB).
    3. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    4. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.
    5. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    6. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    7. Chen, Leiming & Xu, Zhaoping & Liu, Shuangshuang & Liu, Liang, 2022. "Dynamic modeling of a free-piston engine based on combustion parameters prediction," Energy, Elsevier, vol. 249(C).
    8. Sultana, Ayesha & Alam, Md. Mehebub & Ghosh, Sujoy Kumar & Middya, Tapas Ranjan & Mandal, Dipankar, 2019. "Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator," Energy, Elsevier, vol. 166(C), pages 963-971.
    9. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    10. Ahmad O. Hasan & Khamis Essa & Mohamed R. Gomaa, 2022. "Synthesis, Structure Characterization and Study of a New Kind of Catalyst: A Monolith of Nickel Made by Additive Manufacturing Coated with Platinum," Energies, MDPI, vol. 15(20), pages 1-13, October.
    11. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    13. Santiago Molina & Ricardo Novella & Josep Gomez-Soriano & Miguel Olcina-Girona, 2021. "New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization," Energies, MDPI, vol. 14(20), pages 1-21, October.
    14. Swagatika Biswal & Sudhansu Ranjan Das & Nutan Saha & Prakash Chandra Mishra, 2024. "Environmental sustainability assessment of gasoline and methanol blended smart fuel for reduced emission formation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26753-26784, October.
    15. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    16. Xie, Wenlei & Wang, Xiangxiang & Guo, Lihong, 2024. "Utilization of Keplerate-type polyoxomolybdates {Mo132} supported on hierarchical porous SOM-ZIF-8 as reusable catalyst boosts biodiesel production from acidic soybean oils by simultaneous transesteri," Renewable Energy, Elsevier, vol. 225(C).
    17. Zhan, Changfeng & Yin, Yonggao & Jin, Xing & Zhang, Xiaosong, 2018. "Experimental and simulated study on a novel compressed air drying system using a liquid desiccant cycle," Energy, Elsevier, vol. 162(C), pages 60-71.
    18. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    20. Han, Xiaoxiang & Jiang, Shengchou & Chen, Ziyi & Zeng, Zhiwei & Chen, Qing & Niu, Fuge & Pan, Weichun & Tang, Xiujuan & Liu, Shang-Bin, 2023. "Highly active sulfonic ionic liquid modified heteropoly acid composite catalysts for efficient production of ethyl palmitate," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224013598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.