IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i12p2585-2600.html
   My bibliography  Save this article

A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine—the isoengine

Author

Listed:
  • Coney, M.W.
  • Linnemann, C.
  • Abdallah, H.S.

Abstract

A novel concept for a high efficiency reciprocating internal combustion engine (the isoengine) is described and its cycle is analysed. The highly turbocharged engine configuration, which is intended primarily for on-site and distributed power generation, has a predicted electrical output of 7.3 MW. It has the option for co-generation of up to 3.2 MW of hot water at 95 °C supply temperature. The maximum net electrical plant efficiency is predicted to be about 60% on diesel fuel and 58% on natural gas. The key to the high electrical efficiency is the quasi-isothermal compression of the combustion air in cylinders, which are separate from the power cylinders. This achieves a significant saving in compression work and allows the recovery of waste heat back into the cycle, mainly from the exhaust gas by means of a recuperator. The construction of a first 3 MWe prototype isoengine has been completed and its testing has begun. Relevant test results are expected in the near future.

Suggested Citation

  • Coney, M.W. & Linnemann, C. & Abdallah, H.S., 2004. "A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine—the isoengine," Energy, Elsevier, vol. 29(12), pages 2585-2600.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2585-2600
    DOI: 10.1016/j.energy.2004.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morgan, Robert & Dong, Guangyu & Panesar, Angad & Heikal, Morgan, 2016. "A comparative study between a Rankine cycle and a novel intra-cycle based waste heat recovery concepts applied to an internal combustion engine," Applied Energy, Elsevier, vol. 174(C), pages 108-117.
    2. Dong, Guangyu & Morgan, Robert & Heikal, Morgan, 2015. "A novel split cycle internal combustion engine with integral waste heat recovery," Applied Energy, Elsevier, vol. 157(C), pages 744-753.
    3. Goyal, Harsh & Panthi, Niraj & AlRamadan, Abdullah S. & Cenker, Emre & Magnotti, Gaetano, 2023. "Analysis of energy flows and emission characteristics of conventional diesel and isobaric combustion in an optical engine with laser diagnostics," Energy, Elsevier, vol. 269(C).
    4. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    5. Dong, Guangyu & Morgan, Robert E. & Heikal, Morgan R., 2016. "Thermodynamic analysis and system design of a novel split cycle engine concept," Energy, Elsevier, vol. 102(C), pages 576-585.
    6. Zhang, Xinjing & Xu, Yujie & Zhou, Xuezhi & Zhang, Yi & Li, Wen & Zuo, Zhitao & Guo, Huan & Huang, Ye & Chen, Haisheng, 2018. "A near-isothermal expander for isothermal compressed air energy storage system," Applied Energy, Elsevier, vol. 225(C), pages 955-964.
    7. Simon A. Harvey & Konstantina Vogiatzaki & Guillaume de Sercey & William Redpath & Robert E. Morgan, 2021. "Starting to Unpick the Unique Air–Fuel Mixing Dynamics in the Recuperated Split Cycle Engine," Energies, MDPI, vol. 14(8), pages 1-20, April.
    8. Jaya Madana Gopal & Giovanni Tretola & Robert Morgan & Guillaume de Sercey & Andrew Atkins & Konstantina Vogiatzaki, 2020. "Understanding Sub and Supercritical Cryogenic Fluid Dynamics in Conditions Relevant to Novel Ultra Low Emission Engines," Energies, MDPI, vol. 13(12), pages 1-25, June.
    9. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2585-2600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.