IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5775.html
   My bibliography  Save this article

Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures

Author

Listed:
  • Xinjian Shi

    (School of Chemical Engineering and SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University)

  • Il Yong Choi

    (Pohang University of Science and Technology)

  • Kan Zhang

    (School of Chemical Engineering and SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University)

  • Jeong Kwon

    (School of Chemical Engineering and SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University)

  • Dong Yeong Kim

    (Pohang University of Science and Technology)

  • Ja Kyung Lee

    (Pohang University of Science and Technology)

  • Sang Ho Oh

    (Pohang University of Science and Technology)

  • Jong Kyu Kim

    (Pohang University of Science and Technology)

  • Jong Hyeok Park

    (School of Chemical Engineering and SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University)

Abstract

Tungsten trioxide/bismuth vanadate heterojunction is one of the best pairs for solar water splitting, but its photocurrent densities are insufficient. Here we investigate the advantages of using helical nanostructures in photoelectrochemical solar water splitting. A helical tungsten trioxide array is fabricated on a fluorine-doped tin oxide substrate, followed by subsequent coating with bismuth vanadate/catalyst. A maximum photocurrent density of ~5.35±0.15 mA cm−2 is achieved at 1.23 V versus the reversible hydrogen electrode, and related hydrogen and oxygen evolution is also observed from this heterojunction. Theoretical simulations and analyses are performed to verify the advantages of this helical structure. The combination of effective light scattering, improved charge separation and transportation, and an enlarged contact surface area with electrolytes due to the use of the bismuth vanadate-decorated tungsten trioxide helical nanostructures leads to the highest reported photocurrent density to date at 1.23 V versus the reversible hydrogen electrode, to the best of our knowledge.

Suggested Citation

  • Xinjian Shi & Il Yong Choi & Kan Zhang & Jeong Kwon & Dong Yeong Kim & Ja Kyung Lee & Sang Ho Oh & Jong Kyu Kim & Jong Hyeok Park, 2014. "Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5775
    DOI: 10.1038/ncomms5775
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5775
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Tian & Jiang, Guiyuan & Li, Yunlu & Xiang, Wenjing & Fu, Wensheng, 2022. "Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation," Renewable Energy, Elsevier, vol. 199(C), pages 132-139.
    2. Tayebi, Meysam & Lee, Byeong-Kyu, 2019. "Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 332-343.
    3. Tamboli, Mohaseen S. & Patil, Santosh S. & Lee, Dong-Kyu & Praveen, C.S. & Tamboli, Asiya M. & Sim, Uk & Lee, Kiyoung & Gu, Geun Ho & Park, Chinho, 2024. "Dynamic role of dopant and graphene on BiVO4 photoanode for enhanced photoelectrochemical hydrogen production," Energy, Elsevier, vol. 298(C).
    4. Fei He & Seunghyun Weon & Woojung Jeon & Myoung Won Chung & Wonyong Choi, 2021. "Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.