IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009514.html
   My bibliography  Save this article

The advances and opportunities of developing solid-state battery technology: Based on the patent Information Relation Matrix

Author

Listed:
  • Yuan, Yuxin
  • Yuan, Xiaodong

Abstract

There is a long way for solid-state batteries from the laboratory to large-scale application and commercialization. To overcome a series of challenges, researchers and innovators seek to further understand the processing-structure-properties relationships of solid-state batteries. However, less literature explores the advances and opportunities in solid-state battery technology based on patent analysis. The paper adopts the technology of Natural Language Processing (NLP) to analyze patent documents and reveal the advances and opportunities for developing solid-state battery technology by constructing the patent Information Relation Matrix (IRM). This paper finds innovation activities in developing solid-state batteries have been increasingly active in recent decades, but are uneven across organizations. The electrolyte is a priority area of technology development, and the advances in developing solid-state batteries are perfecting conductivity, reducing interfacial resistance, and improving density and stability. By contrast, the opportunities are to reduce cost, prevent short circuits, and prolong the life cycle. The paper perfects the extant method of constructing IRM and gives insight into the advances and opportunities for developing solid-state batteries. Our findings can help innovators better understand advances in solid-state batteries or opportunities for developing solid-state batteries, from a global perspective.

Suggested Citation

  • Yuan, Yuxin & Yuan, Xiaodong, 2024. "The advances and opportunities of developing solid-state battery technology: Based on the patent Information Relation Matrix," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009514
    DOI: 10.1016/j.energy.2024.131178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janghyeok Yoon & Sungchul Choi & Kwangsoo Kim, 2011. "Invention property-function network analysis of patents: a case of silicon-based thin film solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 687-703, March.
    2. Yuan, Xiaodong & Li, Xiaotao, 2021. "Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems," Energy, Elsevier, vol. 222(C).
    3. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    4. Metzger, Philipp & Mendonça, Sandro & Silva, José A. & Damásio, Bruno, 2023. "Battery innovation and the Circular Economy: What are patents revealing?," Renewable Energy, Elsevier, vol. 209(C), pages 516-532.
    5. Fudong Han & Andrew S. Westover & Jie Yue & Xiulin Fan & Fei Wang & Miaofang Chi & Donovan N. Leonard & Nancy J. Dudney & Howard Wang & Chunsheng Wang, 2019. "High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes," Nature Energy, Nature, vol. 4(3), pages 187-196, March.
    6. Rochelle Weber & Matthew Genovese & A. J. Louli & Samuel Hames & Cameron Martin & Ian G. Hill & J. R. Dahn, 2019. "Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte," Nature Energy, Nature, vol. 4(8), pages 683-689, August.
    7. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    2. Yuan, Yuxin & Yuan, Xiaodong, 2023. "Does the development of fuel cell electric vehicles be reviving or recessional? Based on the patent analysis," Energy, Elsevier, vol. 272(C).
    3. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    4. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    6. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    7. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    8. Liwei Zhang & Zhihui Liu, 2020. "Research on technology prospect risk of high-tech projects based on patent analysis," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    9. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    10. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    12. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    13. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Eslami, Hossein & Krishnan, Trichy, 2023. "New sustainable product adoption: The role of economic and social factors," Energy Policy, Elsevier, vol. 183(C).
    15. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    16. Li Huang & Jian Gao & Zhijie Bi & Ning Zhao & Jipeng Wu & Qiu Fang & Xuefeng Wang & Yong Wan & Xiangxin Guo, 2022. "Comparative Study of Stability against Moisture for Solid Garnet Electrolytes with Different Dopants," Energies, MDPI, vol. 15(9), pages 1-9, April.
    17. Jianhua Hou & Xiucai Yang & Haoyang Song & Haiyue Yao, 2023. "Will patent family be dormant? Research on the identification and characteristics of sleeping beauty’s patent family," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5361-5387, October.
    18. Jason Jihoon Ree & Cheolhyun Jeong & Hyunseok Park & Kwangsoo Kim, 2019. "Context–Problem Network and Quantitative Method of Patent Analysis: A Case Study of Wireless Energy Transmission Technology," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    19. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    20. Yan Zhao & Tianhong Zhou & Mounir Mensi & Jang Wook Choi & Ali Coskun, 2023. "Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.