IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224007862.html
   My bibliography  Save this article

Experimental study of CO2/H2/NH3 influence on CH4 flameless combustion process in semi-industrial furnace

Author

Listed:
  • Czyzewski, Pawel
  • Slefarski, Rafal
  • Golebiewski, Michal
  • Alnajideen, Mohammad
  • Valera-Medina, Agustin

Abstract

A flameless combustion mode was employed in a semi-industrial furnace to investigate the effect of NH3 on CH4, which was diluted by CO2/H2 combustible mixtures, serving as the primary fuel. Emission characteristics, as well as toxic compounds and temperature distribution maps, were presented for selected fuels. The combustion system was tested at a constant firing rate of 150 kWth and a constant fuel bulk velocity of 85 m/s. We investigated the effects of equivalence ratio, fuel composition and volume share of NH3 in the fuel. It was found that the equivalence ratio and NH3 amount have the most significant impact on the emission of fuel nitric oxide in the flameless combustion process. The dilution of CH4 with CO2 affects the stretch rate, resulting in an increase in CO levels as well as promoting NO level growth. The calculated dimensionless Conversion Factor (CF) shows that the dilution gas, CO2, significantly impacts the reduction of NH3 to NO, but only for low-content fuel-bound nitrogen (up to 1%). The lowest values of CF were measured for a high equivalence ratio, corresponding to the typical oxygen content for flameless combustion process.

Suggested Citation

  • Czyzewski, Pawel & Slefarski, Rafal & Golebiewski, Michal & Alnajideen, Mohammad & Valera-Medina, Agustin, 2024. "Experimental study of CO2/H2/NH3 influence on CH4 flameless combustion process in semi-industrial furnace," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007862
    DOI: 10.1016/j.energy.2024.131014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szewczyk, Dariusz & Jankowski, Radosław & Ślefarski, Rafał & Chmielewski, Jan, 2015. "Experimental study of the combustion process of gaseous fuels containing nitrogen compounds with the use of new, low-emission Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 92(P1), pages 3-12.
    2. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    3. Szewczyk, Dariusz & Ślefarski, Rafał & Jankowski, Radosław, 2017. "Analysis of the combustion process of syngas fuels containing high hydrocarbons and nitrogen compounds in Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 121(C), pages 716-725.
    4. Jia, Huiqiao & Zou, Chun & Lu, Lixin & Zheng, Hangfei & Qian, Xiang & Yao, Hong, 2018. "Ignition of CH4 intensely diluted with N2 and CO2 versus hot air in a counterflow jets," Energy, Elsevier, vol. 165(PB), pages 315-325.
    5. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    6. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Salehi, Javad & Namvar, Amin & Gazijahani, Farhad Samadi & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Effect of power-to-gas technology in energy hub optimal operation and gas network congestion reduction," Energy, Elsevier, vol. 240(C).
    8. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).
    9. Weber, Roman & Gupta, Ashwani K. & Mochida, Susumu, 2020. "High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Jójka & Rafał Ślefarski, 2021. "Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition," Energies, MDPI, vol. 14(3), pages 1-19, January.
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    6. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    7. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    9. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    10. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    11. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    12. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.
    13. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    14. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    15. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    16. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    17. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    18. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    19. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    20. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.