IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224002536.html
   My bibliography  Save this article

A coupled design methodology concerning complex off-design operation for compressed air energy storage systems

Author

Listed:
  • Huang, Lujing
  • Guo, Huan
  • Xiong, Baichuan
  • Xu, Yujie
  • Huang, Jingjian
  • Zhu, Yilin
  • Chen, Haisheng

Abstract

The volatility and intermittency of the renewable energy and the varied air pressure in air reservoir cause the CAES system to operate under complex off-design conditions. However, little attention is paid to the impact of complex variable operating conditions on system design in previous study, that is the reason why the actual system efficiency is relatively low in the whole process. In order to solve above issues, this paper proposes a new coupled design methodology (CDM) concerning complex off-design operation of CAES system. The compression process, expansion process, and the entire system is optimized with the CDM and the proposed probability-load (PL) factor. Through the CDM process, the average mass flow ratio of the compression process is decreasing while the actual mean back pressure increase under the specific power load curve, with the exergy efficiency increasing by 0.63 %. The average mass flow ratio of the expansion process is increasing, and the efficiency increases by 1.32 %. Meanwhile, in the compression process (or expansion process) design, no matter how the design parameters change, with the increase of input power (or output power) in a certain range, the efficiency increases firstly and then decreases. Eventually, the energy storage efficiency of entire system increases by 2.36 % with the proposed CDM.

Suggested Citation

  • Huang, Lujing & Guo, Huan & Xiong, Baichuan & Xu, Yujie & Huang, Jingjian & Zhu, Yilin & Chen, Haisheng, 2024. "A coupled design methodology concerning complex off-design operation for compressed air energy storage systems," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224002536
    DOI: 10.1016/j.energy.2024.130482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Hailun & Hua, Qingsong & Shi, Juan & Sun, Li, 2023. "Photothermal-assisted scheme design and thermodynamic analysis of advanced adiabatic compressed air energy storage system," Renewable Energy, Elsevier, vol. 215(C).
    2. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    3. Haglind, F., 2010. "Variable geometry gas turbines for improving the part-load performance of marine combined cycles – Gas turbine performance," Energy, Elsevier, vol. 35(2), pages 562-570.
    4. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    5. Guo, Huan & Xu, Yujie & Zhu, Yilin & Zhou, Xuezhi & Chen, Haisheng, 2022. "Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems," Energy, Elsevier, vol. 244(PB).
    6. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    7. Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
    8. Lee, Jong Jun & Kang, Do Won & Kim, Tong Seop, 2011. "Development of a gas turbine performance analysis program and its application," Energy, Elsevier, vol. 36(8), pages 5274-5285.
    9. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    10. Zhou, Shenghui & He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2020. "Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process," Energy, Elsevier, vol. 205(C).
    11. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
    2. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
    3. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    4. Chen, Wei & Qin, Haoxuan & Zhu, Qing & Bai, Jianshu & Xie, Ningning & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2024. "Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 221(C).
    5. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    6. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    7. Liu, Changchun & Su, Xu & Yin, Zhao & Sheng, Yong & Zhou, Xuezhi & Xu, Yujie & Wang, Xudong & Chen, Haisheng, 2024. "Experimental study on the feasibility of isobaric compressed air energy storage as wind power side energy storage," Applied Energy, Elsevier, vol. 364(C).
    8. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    9. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    10. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    11. Xue, Xiaojun & Li, Jiarui & Liu, Jun & Wu, Yunyun & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Performance evaluation of a conceptual compressed air energy storage system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 247(C).
    12. Li, Guangkuo & Chen, Laijun & Xue, Xiaodai & Guo, Zhongjie & Wang, Guohua & Xie, Ningning & Mei, Shengwei, 2022. "Multi-mode optimal operation of advanced adiabatic compressed air energy storage: Explore its value with condenser operation," Energy, Elsevier, vol. 248(C).
    13. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    14. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.
    15. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    18. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-29, February.
    19. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    20. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224002536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.