IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002470.html
   My bibliography  Save this article

A numerical study of cucurbit cultivation in a greenhouse under direct solar radiation and equipped with a direct evaporative cooler in summer season

Author

Listed:
  • Mardomakdeh, Sara Maleki
  • Poshtiri, Amin Haghighi
  • Farahani, Majid

Abstract

The performance of direct evaporative cooler to meet cooling demand of a greenhouse in Tehran in the hottest months of the year as well as water and electricity consumption were numerically studied. The suitable values of air change per hour (ACH) was also obtained for cultivation of tomato, cucumber, eggplant and bell peppers. The k-Ԑ Realizable Turbulence and Discrete Ordinates (DO) models was used for simulating the airflow and estimating radiative heat transfer, respectively. The results showed that an ACH of 10 is proper for tomato cultivation. When the ambient temperature is maximal, an ACH of 15 can be used for cucumber cultivation. However, ACH cannot be kept constant, and ACHs of ≤10 should be utilized when the ambient temperature decreases. For eggplants, it is better to use an ACH 20 at hot hours and an ACH of 10 when the temperature declines. For the bell pepper plant, 20 and 10 ACHs are suitable for day and night hours, respectively. Moreover, the maximum daily water consumed in the greenhouse happens in August and equals 222 lit/day for 20 Air Changes per Hour (ACH). The minimum daily water is consumed in July, equaling 106 lit/day for an ACH of 10. In the present study, the electricity rate consumed in the greenhouse equals 127W when ACH = 20, i.e., the consumed electric energy is 3 kWh for the entire system in a 24-h interval.

Suggested Citation

  • Mardomakdeh, Sara Maleki & Poshtiri, Amin Haghighi & Farahani, Majid, 2024. "A numerical study of cucurbit cultivation in a greenhouse under direct solar radiation and equipped with a direct evaporative cooler in summer season," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002470
    DOI: 10.1016/j.energy.2024.130476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W. & Zhou, P., 2015. "Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates," Applied Energy, Elsevier, vol. 138(C), pages 291-301.
    2. Kürklü, Ahmet & Bilgin, Sefai, 2004. "Cooling of a polyethylene tunnel type greenhouse by means of a rock bed," Renewable Energy, Elsevier, vol. 29(13), pages 2077-2086.
    3. Mohammad Akrami & Alaa H. Salah & Akbar A. Javadi & Hassan E.S. Fath & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Abdelazim Negm, 2020. "Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    2. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    3. Nada, S.A. & Elattar, H.F. & Mahmoud, M.A. & Fouda, A., 2020. "Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers," Energy, Elsevier, vol. 211(C).
    4. Doo-Yong Park & Hyun-Je Lee & Su-In Yun & Sang-Min Choi, 2021. "Simulation Analysis of Daylight Characteristics and Cooling Load Based on Performance Test of Covering Materials Used in Smart Farms," Energies, MDPI, vol. 14(19), pages 1-25, October.
    5. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    6. Nadal, Ana & Llorach-Massana, Pere & Cuerva, Eva & López-Capel, Elisa & Montero, Juan Ignacio & Josa, Alejandro & Rieradevall, Joan & Royapoor, Mohammad, 2017. "Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context," Applied Energy, Elsevier, vol. 187(C), pages 338-351.
    7. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Gong, Xuewen & Li, Xiaoming & Qiu, Rangjian & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Ge, Jiankun, 2022. "Ventilation and irrigation management strategy for tomato cultivated in greenhouses," Agricultural Water Management, Elsevier, vol. 273(C).
    9. He Li & Yiming Li & Xiang Yue & Xingan Liu & Subo Tian & Tianlai Li, 2020. "Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-23, September.
    10. Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
    11. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    12. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    13. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    14. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    15. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    17. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Solar greenhouse an option for renewable and sustainable farming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3934-3945.
    18. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    19. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels," Energies, MDPI, vol. 12(17), pages 1-18, August.
    20. Tomasz Jakubowski & Sedat Boyacı & Joanna Kocięcka & Atılgan Atılgan, 2024. "Determination of Performance of Different Pad Materials and Energy Consumption Values of Direct Evaporative Cooler," Energies, MDPI, vol. 17(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.