IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002275.html
   My bibliography  Save this article

Nonlinear effects of environmental regulation on PM2.5 and CO2 in China: Evidence from a quantile-on-quantile approach

Author

Listed:
  • Hou, Mengyang
  • Cui, Xuehua
  • Chu, Liqi
  • Wang, He
  • Xi, Zenglei
  • Deng, Yuanjie

Abstract

Both environmental regulation (ER) and different pollutants emission are characterized by differentiation, but the nonlinear relationship between different intensities of ER and different levels of pollutants emission has not yet been elaborated. This paper examines the nonlinear effects of ER at different intensities on PM2.5 and CO2 at different states with the help of cutting-edge Quantile on Quantile Approach (QQA), comprehensively reveals the inner law of ER to promote pollutants synergistic reduction. This study found that, both PM2.5 and CO2 show obvious regional differences but are not polarized. ER can effectively help reduce PM2.5 and CO2 in average, and this reduction effect is more obvious for central-western cities. The effects of different intensities of ER on different states of PM2.5 and CO2 have obvious nonlinear spillover characteristics. The impact of ER on PM2.5 shows wave-like changes. Increasing ER intensity has a stronger inhibitory effect on PM2.5 of high scale, but when PM2.5 is relatively low, moderate ER is needed to match it, and excessive intensity of ER will be detrimental to reduce PM2.5. The negative impact of ER on CO2 fluctuates relatively stable. ER at high quantiles have more obvious reduction effect on CO2 of high levels, but excessive intensity of ER is not conducive to reduce CO2. Achieve the synergistic reduction of PM2.5 and CO2 should not only consider the differences in ER between regions, but also to combine the scale differences of pollution and carbon emission. Our study suggests that the improvement of synergistic emission reduction system needs to consider the strength of ER and the level of pollutants emission according to local conditions, which will help to realize green development more efficiently.

Suggested Citation

  • Hou, Mengyang & Cui, Xuehua & Chu, Liqi & Wang, He & Xi, Zenglei & Deng, Yuanjie, 2024. "Nonlinear effects of environmental regulation on PM2.5 and CO2 in China: Evidence from a quantile-on-quantile approach," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002275
    DOI: 10.1016/j.energy.2024.130456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2020. "Sectoral Decomposition of CO2 World Emissions: A Joint Quantile Regression Approach," International Review of Environmental and Resource Economics, now publishers, vol. 14(2-3), pages 197-239, October.
    3. Xi Yang & Fei Teng, 2018. "Air quality benefit of China’s mitigation target to peak its emission by 2030," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 99-110, January.
    4. Peter Rafaj & Wolfgang Schöpp & Peter Russ & Chris Heyes & Markus Amann, 2013. "Co-benefits of post-2012 global climate mitigation policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 801-824, August.
    5. Natalia Porto & Matías Ciaschi, 2021. "Reformulating the tourism-extended environmental Kuznets curve: A quantile regression analysis under environmental legal conditions," Tourism Economics, , vol. 27(5), pages 991-1014, August.
    6. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    7. Hering, Laura & Poncet, Sandra, 2014. "Environmental policy and exports: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 296-318.
    8. Balsalobre-Lorente, Daniel & Ibáñez-Luzón, Lucia & Usman, Muhammad & Shahbaz, Muhammad, 2022. "The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries," Renewable Energy, Elsevier, vol. 185(C), pages 1441-1455.
    9. Wu, Ning & Liu, ZuanKuo, 2021. "Higher education development, technological innovation and industrial structure upgrade," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    10. Qudrat-Ullah, Hassan, 2022. "A review and analysis of renewable energy policies and CO2 emissions of Pakistan," Energy, Elsevier, vol. 238(PB).
    11. Solarin, Sakiru Adebola & Al-Mulali, Usama & Musah, Ibrahim & Ozturk, Ilhan, 2017. "Investigating the pollution haven hypothesis in Ghana: An empirical investigation," Energy, Elsevier, vol. 124(C), pages 706-719.
    12. Joana Portugal-Pereira & Alexandre Koberle & André F. P. Lucena & Pedro R. R. Rochedo & Mariana Império & Ana Monteiro Carsalade & Roberto Schaeffer & Peter Rafaj, 2018. "Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil," Climatic Change, Springer, vol. 148(1), pages 293-309, May.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. Yan, Yaxue & Zhang, Xiaoling & Zhang, Jihong & Li, Kai, 2020. "Emissions trading system (ETS) implementation and its collaborative governance effects on air pollution: The China story," Energy Policy, Elsevier, vol. 138(C).
    15. Chang, Shiyan & Yang, Xi & Zheng, Haotian & Wang, Shuxiao & Zhang, Xiliang, 2020. "Air quality and health co-benefits of China's national emission trading system," Applied Energy, Elsevier, vol. 261(C).
    16. Zhang, Ping & Shi, XunPeng & Sun, YongPing & Cui, Jingbo & Shao, Shuai, 2019. "Have China's provinces achieved their targets of energy intensity reduction? Reassessment based on nighttime lighting data," Energy Policy, Elsevier, vol. 128(C), pages 276-283.
    17. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    18. O'Sullivan, Jane N., 2020. "The social and environmental influences of population growth rate and demographic pressure deserve greater attention in ecological economics," Ecological Economics, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & You, Shijun, 2024. "Pump-stopping-induced hydraulic oscillations in long-distance district heating system: Modelling and a comprehensive analysis of critical factors," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zhaoyingzi & Xia, Chuyu & Fang, Kai & Zhang, Weiwen, 2022. "Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control," Energy Policy, Elsevier, vol. 165(C).
    2. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    3. Cai, Hechang & Wang, Zilong & Zhang, Zhiwen & Xu, Liuyang, 2023. "Does environmental regulation promote technology transfer? Evidence from a partially linear functional-coefficient panel model," Economic Modelling, Elsevier, vol. 124(C).
    4. Zhang, Jiekuan, 2023. "Emissions trading scheme and energy consumption and output structure: Evidence from China," Renewable Energy, Elsevier, vol. 219(P1).
    5. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    6. Zhang, Hongyu & Zhang, Da & Zhang, Xiliang, 2023. "The role of output-based emission trading system in the decarbonization of China's power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Ren, Xiaohang & Wang, Rui & Duan, Kun & Chen, Jinyu, 2022. "Dynamics of the sheltering role of Bitcoin against crude oil market crash with varying severity of the COVID-19: A comparison with gold," Research in International Business and Finance, Elsevier, vol. 62(C).
    8. Qin, Meng & Su, Chi-Wei & Umar, Muhammad & Lobonţ, Oana-Ramona & Manta, Alina Georgiana, 2023. "Are climate and geopolitics the challenges to sustainable development? Novel evidence from the global supply chain," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 748-763.
    9. Dai, Zhifeng & Zhu, Haoyang, 2023. "Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 421-450.
    10. Xin Zhao & Muhammad Saeed Meo & Tella Oluwatoba Ibrahim & Noshaba Aziz & Solomon Prince Nathaniel, 2023. "Impact of Economic Policy Uncertainty and Pandemic Uncertainty on International Tourism: What do We Learn From COVID-19?," Evaluation Review, , vol. 47(2), pages 320-349, April.
    11. Yousaf, Imran & Hunjra, Ahmed Imran & Alshater, Muneer M. & Bouri, Elie & Li, Yanshuang, 2023. "Multidimensional connectedness among the volatility of global financial markets around the Russian-Ukrainian conflict," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    12. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    13. Mo, Bin & Nie, He & Zhao, Rongjie, 2024. "Dynamic nonlinear effects of geopolitical risks on commodities: Fresh evidence from quantile methods," Energy, Elsevier, vol. 288(C).
    14. Xian, Botong & Wang, Yanan & Xu, Yalin & Wang, Juan & Li, Xiaoyan, 2024. "Assessment of the co-benefits of China's carbon trading policy on carbon emissions reduction and air pollution control in multiple sectors," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1322-1335.
    15. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    16. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Wang, Kai-Hua & Wang, Zu-Shan & Yunis, Manal & Kchouri, Bilal, 2023. "Spillovers and connectedness among climate policy uncertainty, energy, green bond and carbon markets: A global perspective," Energy Economics, Elsevier, vol. 128(C).
    18. Chen, Jinyu & Wang, Yilin & Ren, Xiaohang, 2023. "Asymmetric effect of financial stress on China’s precious metals market: Evidence from a quantile-on-quantile regression," Research in International Business and Finance, Elsevier, vol. 64(C).
    19. Xuehui Yang & Jiaping Zhang & Lehua Bi & Yiming Jiang, 2023. "Does China’s Carbon Trading Pilot Policy Reduce Carbon Emissions? Empirical Analysis from 285 Cities," IJERPH, MDPI, vol. 20(5), pages 1-24, March.
    20. Zhang, Bo & Zhao, Meiyu & Tu, Yongqian, 2023. "Sustainable development and resources extraction: A novel perspective for resources rich economies," Resources Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.