IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000136.html
   My bibliography  Save this article

Study on the morphology, nanostructure and fragmentation properties of diesel and diesel-DMM soot particles oxidized in the air/air-NO environment

Author

Listed:
  • Wei, Jiangjun
  • Chen, Haiwang
  • Zeng, Yang

Abstract

As an alternative fuel for diesel engines, dimethoxymethane (DMM) has attracted wide attention in recent years, but its impact on the post-treatment process of diesel exhaust particles has been rarely studied. To get a better understanding of the oxidation kinetics of soot in diesel particulate filters (DPFs), the oxidation process of soot emitted from a modern compression ignition (CI) fueled by diesel (D100) and its blend with 11 vol% dimethoxymethane (DMM11) at the same working conditions were investigated by a thermogravimetric analyzer in the air and air-NO atmospheres in this study, respectively. Soot samples at different oxidation degrees (0 %, 20 %, 50 % and 80 % mass loss) were tested by a high-resolution transmission microscopy to characterize the variations of physical properties (morphology, fractal dimension, primary particle diameter and nanostructure) and oxidation-induced fragmentation properties over the oxidation process. The results showed that DMM11 soot had higher oxidation reactivity than D100 soot, and the oxidation reactivity of soot was enhanced by NO involved in the air atmosphere. During the oxidation process, the fractal dimension of D100 and DMM11 soot aggregates gradually increased, and the number and diameter of the primary particles in an aggregate became smaller. This variation trends became more obvious with the presence of NO in the air environment. The nanostructures of D100 and DMM11 soot particles gradually become ordered (characterized by longer fringe length, narrower separation distance and less tortuosity) as the oxidation proceeds. While, when NO added in the air atmosphere the possibility of microcrystals oxidation inside the particles decrease to slow down the getting-ordered rate of soot. Moreover, the fragmentation probability of D100 and DMM11 soot aggregates decreases gradually as oxidation proceeds. During the oxidation process, the probability of primary particle fragmentation for D100 soot increases continuously, while the probability of DMM11 primary soot particles fragmentation showed an increase-then-decrease trend. Compare with D100 soot, DMM11 soot are more likely to occur the fragmentation behavior over the oxidation process. It is worth noting that the addition of NO to the air atmosphere increases the possibility of aggregate fragmentation, while it decreases the possibility of primary particle fragmentation. This work can provide theoretical basis for the development of high efficiency purification technology for diesel exhaust particles.

Suggested Citation

  • Wei, Jiangjun & Chen, Haiwang & Zeng, Yang, 2024. "Study on the morphology, nanostructure and fragmentation properties of diesel and diesel-DMM soot particles oxidized in the air/air-NO environment," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000136
    DOI: 10.1016/j.energy.2024.130242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    2. Ya, Yuchen & Nie, Xiaokang & Han, Weiwei & Xiang, Longkai & Gu, Mingyan & Chu, Huaqiang, 2020. "Effects of 2, 5–dimethylfuran/ethanol addition on soot formation in n-heptane/iso-octane/air coflow diffusion flames," Energy, Elsevier, vol. 210(C).
    3. Zhao, Weihua & Yan, Junhao & Gao, Suya & Lee, Timothy H. & Li, Xiangrong, 2022. "The combustion and emission characteristics of a common-rail diesel engine fueled with diesel and higher alcohols blends with a high blend ratio," Energy, Elsevier, vol. 261(PB).
    4. Tamilvanan, A. & Mohanraj, T. & Ashok, B. & Santhoshkumar, A., 2023. "Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization," Energy, Elsevier, vol. 264(C).
    5. Hua, Yan & Wang, Zhong & Li, Ruina & Liu, Shuai & Zhao, Yang & Qu, Lei & Mei, Deqing & Lv, Hui, 2022. "Experimental study on morphology, nanostructure and oxidation reactivity of particles in diesel engine with exhaust gas recirculation (EGR) burned with different alternative fuels," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    2. Han, Zhiqiang & Li, Bolun & Tian, Wei & Xia, Qi & Leng, Songpeng, 2019. "Influence of coupling action of oxygenated fuel and gas circuit oxygen on hydrocarbons formation in diesel engine," Energy, Elsevier, vol. 173(C), pages 196-206.
    3. Feng, Hongqing & Chen, Xiaofan & Sun, Liangliang & Ma, Ruixiu & Zhang, Xiuxia & Zhu, Lijun & Yang, Chaohe, 2023. "The effect of methanol/diesel fuel blends with co-solvent on diesel engine combustion based on experiment and exergy analysis," Energy, Elsevier, vol. 282(C).
    4. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    5. Lapuerta, Magín & Hernández, Juan José & Fernández-Rodríguez, David & Cova-Bonillo, Alexis, 2017. "Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber," Energy, Elsevier, vol. 118(C), pages 613-621.
    6. Wei Tian & Yunlu Chu & Zhiqiang Han & Xiang Wang & Wenbin Yu & Xueshun Wu, 2019. "Experimental Study of the Effect of Intake Oxygen Concentration on Engine Combustion Process and Hydrocarbon Emissions with N-Butanol-Diesel Blended Fuel," Energies, MDPI, vol. 12(7), pages 1-17, April.
    7. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    8. Thanigaivelan Vadivelu & Lavanya Ramanujam & Rajesh Ravi & Shivaprasad K. Vijayalakshmi & Manoranjitham Ezhilchandran, 2022. "An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen," Energies, MDPI, vol. 16(1), pages 1-13, December.
    9. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    10. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    11. Zhang, Yu & Huang, Ronghua & Huang, Yuhan & Huang, Sheng & Zhou, Pei & Chen, Xi & Qin, Tian, 2018. "Experimental study on combustion characteristics of an n-butanol-biodiesel droplet," Energy, Elsevier, vol. 160(C), pages 490-499.
    12. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    13. Xu, Min & Jiang, Peng & Zhong, Wenjun & Yan, Feibin & Liu, Xu & Wang, Qian, 2023. "Experimental investigation combined with steady-state and transient-state tests on soot characteristics of hydrogenated catalytic biodiesel/n-butanol blends," Energy, Elsevier, vol. 282(C).
    14. Qianqian Mu & Fuwu Yan & Jizhou Zhang & Lei Xu & Yu Wang, 2021. "Experimental and Numerical Study on the Sooting Behaviors of Furanic Biofuels in Laminar Counterflow Diffusion Flames," Energies, MDPI, vol. 14(18), pages 1-16, September.
    15. Jinhong Shi & Tie Wang & Zhen Zhao & Tiantian Yang & Zhengwu Zhang, 2018. "Experimental Study of Injection Parameters on the Performance of a Diesel Engine with Fischer–Tropsch Fuel Synthesized from Coal," Energies, MDPI, vol. 11(12), pages 1-11, November.
    16. Mustafa Kemal Balki, 2024. "Determination of Optimum Operating Parameters in a Non-Road Diesel Engine Fueled with 1-Heptanol/Biodiesel at Different Injection Pressures and Advances," Energies, MDPI, vol. 17(7), pages 1-15, March.
    17. Haifeng Liu & Xichang Wang & Diping Zhang & Fang Dong & Xinlu Liu & Yong Yang & Haozhong Huang & Yang Wang & Qianlong Wang & Zunqing Zheng, 2019. "Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle," Energies, MDPI, vol. 12(10), pages 1-21, May.
    18. Zhong, Wenjun & Tamilselvan, P. & Wang, Qian & He, Zhixia & Feng, Huan & Yu, Xiong, 2018. "Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions," Energy, Elsevier, vol. 153(C), pages 349-358.
    19. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    20. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.