IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics036054422303503x.html
   My bibliography  Save this article

Integrated hybrid multi-regional input-output for assessing life cycle air emissions of the Italian power system

Author

Listed:
  • Luu, Le Quyen
  • Gibon, Thomas
  • Cellura, Maurizio
  • Sanseverino, Eleonora Riva
  • Longo, Sonia

Abstract

The air emissions of the Italian power system, as well as national emissions between 2010 and 2017 and projections to 2040, have been assessed from a lifecycle perspective, using an integrated hybrid two-region input-output model of Italy versus the rest of the world. The Italian economy is divided into 42 sectors, including electricity, which is further disaggregated into seven technologies. Detailed electricity sector data, from Istat, are fed into the EXIOBASE input-output database. NAMEA tables represent overall air emissions, while the Ecoinvent database is used for the electricity sector. Electricity transition scenarios from Terna and Snam have been integrated into input-output and air emission databases. Demand and emissions were tracked within the electricity sector over medium-term, and the findings showed a sharp decrease between 2017 and 2025, from 97.5 MtCO2 to 32.6 MtCO2. By 2040, air emissions from the electricity sector are expected to grow gradually, compared to those of 2030, from 22.2 MtCO2 to 25.9 MtCO2, suggesting that the demand between 2030 and 2040 grows faster than the decarbonization effort during the same period. There is an overall, gradual downtrend between 2010 and 2040, with all air emission categories declining by half from both production and consumption-based perspectives in this period.

Suggested Citation

  • Luu, Le Quyen & Gibon, Thomas & Cellura, Maurizio & Sanseverino, Eleonora Riva & Longo, Sonia, 2024. "Integrated hybrid multi-regional input-output for assessing life cycle air emissions of the Italian power system," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422303503x
    DOI: 10.1016/j.energy.2023.130109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303503X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    2. Justin Kitzes, 2013. "An Introduction to Environmentally-Extended Input-Output Analysis," Resources, MDPI, vol. 2(4), pages 1-15, September.
    3. Li, Ruixiong & Zhang, Haoran & Wang, Huanran & Tu, Qingshi & Wang, Xuejun, 2019. "Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China," Energy, Elsevier, vol. 174(C), pages 310-322.
    4. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    5. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    6. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "The energy and environmental impacts of Italian households consumptions: An input–output approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3897-3908.
    7. Piñero, Pablo & Cazcarro, Ignacio & Arto, Iñaki & Mäenpää, Ilmo & Juutinen, Artti & Pongrácz, Eva, 2018. "Accounting for Raw Material Embodied in Imports by Multi-regional Input-Output Modelling and Life Cycle Assessment, Using Finland as a Study Case," Ecological Economics, Elsevier, vol. 152(C), pages 40-50.
    8. Maxime Agez & Elliot Muller & Laure Patouillard & Carl‐Johan H. Södersten & Anders Arvesen & Manuele Margni & Réjean Samson & Guillaume Majeau‐Bettez, 2022. "Correcting remaining truncations in hybrid life cycle assessment database compilation," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 121-133, February.
    9. Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.
    10. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    11. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    2. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    3. Shuping Li & Jing Meng & Klaus Hubacek & Shaikh M. S. U. Eskander & Yuan Li & Peipei Chen & Dabo Guan, 2024. "Revisiting Copenhagen climate mitigation targets," Nature Climate Change, Nature, vol. 14(5), pages 468-475, May.
    4. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    5. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    6. Avelino, André F.T. & Franco-Solís, Alberto & Carrascal-Incera, André, 2021. "Revisiting the Temporal Leontief Inverse: New Insights on the Analysis of Regional Technological Economic Change," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 79-89.
    7. Duarte, Rosa & Serrano, Ana, 2021. "Environmental analysis of structural and technological change in a context of trade expansion: Lessons from the EU enlargement," Energy Policy, Elsevier, vol. 150(C).
    8. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    9. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    10. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina & Orioli, Aldo, 2013. "The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study," Renewable Energy, Elsevier, vol. 60(C), pages 586-597.
    11. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    13. Philipp Schepelmann & An Vercalsteren & José Acosta-Fernandez & Mathieu Saurat & Katrien Boonen & Maarten Christis & Giovanni Marin & Roberto Zoboli & Cathy Maguire, 2020. "Driving Forces of Changing Environmental Pressures from Consumption in the European Food System," Sustainability, MDPI, vol. 12(19), pages 1-30, October.
    14. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    15. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    16. Wood, Richard & Neuhoff, Karsten & Moran, Dan & Simas, Moana & Grubb, Michael & Stadler, Konstantin, 2020. "The structure, drivers and policy implications of the European carbon footprint," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(sup1), pages 39-57.
    17. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    18. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    19. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    20. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422303503x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.