IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp310-322.html
   My bibliography  Save this article

Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China

Author

Listed:
  • Li, Ruixiong
  • Zhang, Haoran
  • Wang, Huanran
  • Tu, Qingshi
  • Wang, Xuejun

Abstract

Concentrated solar power (CSP), a technology that provides electricity by concentrating solar energy into a single focal point, shows great potential for large-scale utilization. In this study, an integrated hybrid life cycle assessment (LCA) model for multiple regions of China is presented to evaluate the life cycle CO2 emission, energy consumption, and energy payback time of a 10-MW power tower CSP plant located in China. Over its life cycle of 25 years, the CSP plant is estimated to have CO2 emissions of 35 g/kWh, consume 514 kJ/kWh of energy, and have an energy payback time close to four years. Using the proposed hybrid model, a significant advantage is the ability to compare the life cycle impact sourced from each sector in input-output economic background. Based on the regionalization of economic background at the province level, the most noteworthy impact is from Hubei province; besides, the CO2 emission from the electricity sector in each province is the largest contributor. The majority (54%) of the life cycle CO2 emission of the CSP plant is contributed by the northern region of China due to the higher utilization of coal in the economy of that region, yet most of the energy consumption comes from the southern part of China because of the concentration of manufacturing there. For the life cycle impact of a CSP plant, thermal energy storage using molten salt, and solar collection demanding lots of steel are the two most significant contributors to CO2 emission and energy consumption.

Suggested Citation

  • Li, Ruixiong & Zhang, Haoran & Wang, Huanran & Tu, Qingshi & Wang, Xuejun, 2019. "Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China," Energy, Elsevier, vol. 174(C), pages 310-322.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:310-322
    DOI: 10.1016/j.energy.2019.02.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    2. San Miguel, G. & Corona, B., 2014. "Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: Analysis of environmental performance using LCA," Renewable Energy, Elsevier, vol. 66(C), pages 580-587.
    3. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    4. Ehtiwesh, Ismael A.S. & Coelho, Margarida C. & Sousa, Antonio C.M., 2016. "Exergetic and environmental life cycle assessment analysis of concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 145-155.
    5. Viebahn, Peter & Lechon, Yolanda & Trieb, Franz, 2011. "The potential role of concentrated solar power (CSP) in Africa and Europe--A dynamic assessment of technology development, cost development and life cycle inventories until 2050," Energy Policy, Elsevier, vol. 39(8), pages 4420-4430, August.
    6. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    7. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    8. Rodriguez-Sanchez, David & Rosengarten, Gary, 2015. "Improving the concentration ratio of parabolic troughs using a second-stage flat mirror," Applied Energy, Elsevier, vol. 159(C), pages 620-632.
    9. Sangwon Suh & Edgar Hertwich & Stefanie Hellweg & Alissa Kendall, 2016. "Life Cycle Environmental and Natural Resource Implications of Energy Efficiency Technologies," Journal of Industrial Ecology, Yale University, vol. 20(2), pages 218-222, April.
    10. Bouman, Evert A. & Øberg, Martha M. & Hertwich, Edgar G., 2016. "Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES)," Energy, Elsevier, vol. 95(C), pages 91-98.
    11. He, Jiankun & Deng, Jing & Su, Mingshan, 2010. "CO2 emission from China's energy sector and strategy for its control," Energy, Elsevier, vol. 35(11), pages 4494-4498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    2. Qi, Xiaoyan & Yao, Xilong & Guo, Pibin & Han, Yunfei & Liu, Lin, 2024. "Applying life cycle assessment to investigate the environmental impacts of a PV–CSP hybrid system," Renewable Energy, Elsevier, vol. 227(C).
    3. Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
    4. Yan Li & Guoshun Wang & Zhaohao Li & Jiahai Yuan & Dan Gao & Heng Zhang, 2020. "A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    5. Güney, Taner, 2022. "Solar energy, governance and CO2 emissions," Renewable Energy, Elsevier, vol. 184(C), pages 791-798.
    6. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    7. Xianpeng Liu & Heng Zhang & Minfeng Yao & Li Li & Yuchen Qin, 2023. "Assessment of Carbon Reduction Benefits of A/O-Gradient Constructed Wetland Renovation for Rural Wastewater Treatment in the Southeast Coastal Areas of China Based on Life Cycle Assessment: The Exampl," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    8. Luu, Le Quyen & Gibon, Thomas & Cellura, Maurizio & Sanseverino, Eleonora Riva & Longo, Sonia, 2024. "Integrated hybrid multi-regional input-output for assessing life cycle air emissions of the Italian power system," Energy, Elsevier, vol. 290(C).
    9. Chen, Fuying & Yang, Qing & Zheng, Niting & Wang, Yuxuan & Huang, Junling & Xing, Lu & Li, Jianlan & Feng, Shuanglei & Chen, Guoqian & Kleissl, Jan, 2022. "Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS)," Applied Energy, Elsevier, vol. 315(C).
    10. Qi Wu & Shouheng Sun, 2022. "Energy and Environmental Impact of the Promotion of Battery Electric Vehicles in the Context of Banning Gasoline Vehicle Sales," Energies, MDPI, vol. 15(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    2. Petrollese, Mario & Cocco, Daniele, 2020. "Techno-economic assessment of hybrid CSP-biogas power plants," Renewable Energy, Elsevier, vol. 155(C), pages 420-431.
    3. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.
    5. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    6. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    7. Man Yu & Thomas Wiedmann, 2018. "Implementing hybrid LCA routines in an input–output virtual laboratory," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    8. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    9. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    10. Bijarniya, Jay Prakash & Sudhakar, K. & Baredar, Prashant, 2016. "Concentrated solar power technology in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 593-603.
    11. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    12. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    13. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    14. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    15. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    16. Charles Neumeyer & Robert Goldston, 2016. "Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario," Sustainability, MDPI, vol. 8(5), pages 1-15, April.
    17. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    18. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    19. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    20. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:310-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.