IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034874.html
   My bibliography  Save this article

Energy evolution analysis of heat-treated hydrated shale

Author

Listed:
  • Zhou, Zhixiang
  • Wen, Hang
  • Pang, Huiwen
  • Liang, Lihao
  • Jiang, Xingwen
  • Song, Jiabang

Abstract

To verify the effect of hydrated shale treated by different heat treatment conditions (including heating temperature, heating rate and holding time) on shale gas exploitation efficiency. In this study, uniaxial compression tests were carried out on shale treated under different conditions, and the energy evolution in the process of shale deformation and failure was analysed. According to the energy dissipation and energy accumulation in the process of deformation and failure, the initial porosity, deformation resistance and rock strength of shale sample are discussed and analysed. The results indicate that after high-temperature heating treatment, the initial porosity, ability to resist deformation during elastic deformation stage, and brittleness characteristics of hydrated shale are all improved. The total input energy decreases by 23.16 %, and the peak dissipated energy decreases by 45.89 %, while the proportion of elastic strain energy to total energy in the compaction stage increases by 31.58 %. After thermal treatment, the hydrated shale exhibits increased initial damage, increased rock porosity, and enhanced ability to resist deformation. Therefore, high-temperature heat treatment of hydrated shale is conducted before shale gas exploitation, which enhances both the extraction efficiency and safety during the extraction process. This method is theoretically feasible.

Suggested Citation

  • Zhou, Zhixiang & Wen, Hang & Pang, Huiwen & Liang, Lihao & Jiang, Xingwen & Song, Jiabang, 2024. "Energy evolution analysis of heat-treated hydrated shale," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034874
    DOI: 10.1016/j.energy.2023.130093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katende, Allan & Rutqvist, Jonny & Massion, Cody & Radonjic, Mileva, 2023. "Experimental flow-through a single fracture with monolayer proppant at reservoir conditions: A case study on Caney Shale, Southwest Oklahoma, USA," Energy, Elsevier, vol. 273(C).
    2. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    3. Dong, Xiao & Trembly, Jason & Bayless, David, 2017. "Techno-economic analysis of hydraulic fracking flowback and produced water treatment in supercritical water reactor," Energy, Elsevier, vol. 133(C), pages 777-783.
    4. Khalid Elwegaa & Hossein Emadi, 2018. "The Effect of Thermal Shocking with Nitrogen Gas on the Porosities, Permeabilities, and Rock Mechanical Properties of Unconventional Reservoirs," Energies, MDPI, vol. 11(8), pages 1-16, August.
    5. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    6. Ma, Lin & Dowey, Patrick J. & Rutter, Ernest & Taylor, Kevin G. & Lee, Peter D., 2019. "A novel upscaling procedure for characterising heterogeneous shale porosity from nanometer-to millimetre-scale in 3D," Energy, Elsevier, vol. 181(C), pages 1285-1297.
    7. Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental and numerical investigation on the fracture behavior of deep anisotropic shale reservoir under in-situ temperature," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    2. Kasala, Erasto E. & Wang, Jinjie & Lwazi, Hussein M. & Nyakilla, Edwin E. & Kibonye, John S., 2024. "The influence of hydraulic fracture and reservoir parameters on the storage of CO2 and enhancing CH4 recovery in Yanchang formation," Energy, Elsevier, vol. 296(C).
    3. Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
    4. Rezaeyan, Amirsaman & Kampman, Niko & Pipich, Vitaliy & Barnsley, Lester C. & Rother, Gernot & Magill, Clayton & Ma, Jingsheng & Busch, Andreas, 2024. "Compaction and clay content control mudrock porosity," Energy, Elsevier, vol. 289(C).
    5. Shi, Rui & Liu, Jishan & Wang, Xiaoming & Wei, Mingyao & Elsworth, Derek, 2021. "A critical analysis of shale laboratory permeability evolution data," Energy, Elsevier, vol. 236(C).
    6. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    7. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    8. Minsu Cha & Naif B. Alqahtani & Xiaolong Yin & Lei Wang & Bowen Yao & Timothy J. Kneafsey & Jennifer L. Miskimins & Yu-Shu Wu, 2021. "Propagation of Cryogenic Thermal Fractures from Unconfined PMMA Boreholes," Energies, MDPI, vol. 14(17), pages 1-17, September.
    9. Kang, Zhiqin & Jiang, Xing & Wang, Lei & Yang, Dong & Ma, Yulin & Zhao, Yangsheng, 2023. "Comparative investigation of in situ hydraulic fracturing and high-temperature steam fracturing tests for meter-scale oil shale," Energy, Elsevier, vol. 281(C).
    10. Guo, Yide & Dyskin, Arcady & Pasternak, Elena, 2024. "Thermal spallation of dry rocks induced by flame parallel or normal to layering: Effect of anisotropy," Energy, Elsevier, vol. 288(C).
    11. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    12. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    13. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    14. Medina, Federico Javier & Jausoro, Ignacio & Floridia Addato, María Alejandra & Rodriguez, María Jimena & Tomassini, Federico González & Caneiro, Alberto, 2022. "On the evaluation of Representative Elementary Area for porosity in shale rocks by Field Emission Scanning Electron Microscopy," Energy, Elsevier, vol. 253(C).
    15. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    16. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
    17. Lv, Mingkun & Guo, Tiankui & Jia, Xuliang & Wen, Duwu & Chen, Ming & Wang, Yunpeng & Qu, Zhanqing & Ma, Daibing, 2024. "Study on the pump schedule impact in hydraulic fracturing of unconventional reservoirs on proppant transport law," Energy, Elsevier, vol. 286(C).
    18. Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
    19. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    20. Zheng, Cunchuan & Liu, Fuchuan & Zhang, Tailiang & Huang, Zhiyu, 2021. "Preparation of fluoropolymer nanoparticles(FPNPs) dispersion and its application as a wetting adjustment agent for sandstone rocks," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.