IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031997.html
   My bibliography  Save this article

Correlation as a method to assess electricity users’ contributions to grid peak loads: A case study

Author

Listed:
  • Flygare, Carl
  • Wallberg, Alexander
  • Jonasson, Erik
  • Castellucci, Valeria
  • Waters, Rafael

Abstract

Flexibility has increasingly gained attention within the field of electrification and energy transition where a common objective is to reduce the electricity consumption peaks. However, flexibility can increase the risk of grid congestion depending on where and when and it is used, thus an overall system perspective needs to be considered to ensure an effective energy transition. This paper presents a framework to assess electricity users’ contributions to grid load peaks by splitting electricity consumption data into subsets based on time and temperature. The data in each subset is separately correlated with the grid load using three correlation measures to assess how the user’s consumption changes at the same time as typical grid peak loads occur. The framework is implemented on four different types of business activities at Uppsala municipality in Sweden, which is a large public entity, to explore their behaviors and assess their grid peak load contributions. The results of this study conclude that all four activities generally contribute to the grid peak loads, but that differences exist. These differences are not visible without splitting the data, and not doing so can lead to unrepresentative conclusions. The presented framework can identify activities that contribute the most to unfavorable grid peaks, providing a tool for decision-makers to enable an accelerated energy transition.

Suggested Citation

  • Flygare, Carl & Wallberg, Alexander & Jonasson, Erik & Castellucci, Valeria & Waters, Rafael, 2024. "Correlation as a method to assess electricity users’ contributions to grid peak loads: A case study," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031997
    DOI: 10.1016/j.energy.2023.129805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang, Anh Tuan & Sandro Nižetić, & Olcer, Aykut I. & Ong, Hwai Chyuan & Chen, Wei-Hsin & Chong, Cheng Tung & Thomas, Sabu & Bandh, Suhaib A. & Nguyen, Xuan Phuong, 2021. "Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications," Energy Policy, Elsevier, vol. 154(C).
    2. Hyung Tae Kim & Young Gyu Jin & Yong Tae Yoon, 2019. "An Economic Analysis of Load Leveling with Battery Energy Storage Systems (BESS) in an Electricity Market Environment: The Korean Case," Energies, MDPI, vol. 12(9), pages 1-16, April.
    3. Richardson, David B. & Harvey, L.D.D., 2015. "Strategies for correlating solar PV array production with electricity demand," Renewable Energy, Elsevier, vol. 76(C), pages 432-440.
    4. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2015. "Wind speed and electricity demand correlation analysis in the Australian National Electricity Market: Determining wind turbine generators’ ability to meet electricity demand without energy storage," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 182-191.
    5. Jon Olauson & Mohd Nasir Ayob & Mikael Bergkvist & Nicole Carpman & Valeria Castellucci & Anders Goude & David Lingfors & Rafael Waters & Joakim Widén, 2016. "Net load variability in Nordic countries with a highly or fully renewable power system," Nature Energy, Nature, vol. 1(12), pages 1-8, December.
    6. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
    7. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    8. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    9. Lindberg, O. & Lingfors, D. & Arnqvist, J., 2022. "Analyzing the mechanisms behind temporal correlation between power sources using frequency separated time scales: A Swedish case study on PV and wind," Energy, Elsevier, vol. 259(C).
    10. Mateo Jesper & Felix Pag & Klaus Vajen & Ulrike Jordan, 2022. "Heat Load Profiles in Industry and the Tertiary Sector: Correlation with Electricity Consumption and Ex Post Modeling," Sustainability, MDPI, vol. 14(7), pages 1-32, March.
    11. Cantão, Mauricio P. & Bessa, Marcelo R. & Bettega, Renê & Detzel, Daniel H.M. & Lima, João M., 2017. "Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps," Renewable Energy, Elsevier, vol. 101(C), pages 1215-1225.
    12. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    13. Coles, Daniel & Wray, Bevan & Stevens, Rob & Crawford, Scott & Pennock, Shona & Miles, Jon, 2023. "Impacts of tidal stream power on energy system security: An Isle of Wight case study," Applied Energy, Elsevier, vol. 334(C).
    14. Olauson, Jon & Bergkvist, Mikael, 2016. "Correlation between wind power generation in the European countries," Energy, Elsevier, vol. 114(C), pages 663-670.
    15. Zhong, Jin & Bollen, Math & Rönnberg, Sarah, 2021. "Towards a 100% renewable energy electricity generation system in Sweden," Renewable Energy, Elsevier, vol. 171(C), pages 812-824.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    2. Zhang, Yi & Cheng, Chuntian & Cao, Rui & Li, Gang & Shen, Jianjian & Wu, Xinyu, 2021. "Multivariate probabilistic forecasting and its performance’s impacts on long-term dispatch of hydro-wind hybrid systems," Applied Energy, Elsevier, vol. 283(C).
    3. Larisa Gorina & Marina Gordova & Irina Khristoforova & Lyudmila Sundeeva & Wadim Strielkowski, 2023. "Sustainable Education and Digitalization through the Prism of the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    4. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    5. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    6. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    7. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    8. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    9. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    10. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    11. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    12. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    13. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    14. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    15. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    16. Sumarno, Theresia B. & Sihotang, Parulian & Prawiraatmadja, Widhyawan, 2022. "Exploring Indonesia's energy policy failures through the JUST framework," Energy Policy, Elsevier, vol. 164(C).
    17. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    18. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    19. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    20. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.