IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028785.html
   My bibliography  Save this article

Experimental and density functional theory study on role of calcium in NO reduction by NH3 on char surface during ammonia co-firing with pulverized coal

Author

Listed:
  • Jia, Meng-Chuan
  • Su, Sheng
  • He, Li-Mo
  • Chen, Yi-Feng
  • Xu, Kai
  • Jiang, Long
  • Xu, Jun
  • Wang, Yi
  • Hu, Song
  • Xiang, Jun

Abstract

As a carbon-free energy, NH3 has attracted increasing attention from scholars. Ammonia-coal co-firing, as a technology for ammonia energy utilization, has great application potential. However, the NOx generated during ammonia combustion cannot be ignored due to the N element in NH3. At present, the reaction mechanism of NH3 and NO on char, together with the influence mechanism of mineral Ca, in the combustion reduction zone during ammonia-coal co-firing is still unclear. In this study, the effects of Ca on the NO reduction with NH3 on the char surface have been investigated in the high-temperature reaction system. The NO reduction efficiency and the evolutions of char structural characteristics during the reaction processes were analyzed for both demineralized coal char and CaCl2-loaded coal char. The reaction mechanism was also investigated at the molecular level using density functional theory (DFT) to clarify NO reduction and CO release pathways with and without Ca. The DFT results showed that during NO reduction on char surface, NNH group formation and CO desorption are crucial steps in the presence of NH3. Ca plays a catalytic role in NO reduction reaction, which affects NO reduction by NH3 on char surface in two ways. On the one hand, Ca facilitates the reduction of NO to N2 by lowering the energy barrier for NNH group formation (20.98 kJ/mol) and N2 release (93.70 kJ/mol). On the other hand, the formation of Ca–O–C structure increases the energy barrier for CO release from char surface (377.25 kJ/mol), which is unfavorable for NO reduction. The experimental results showed that between 1300 °C and 1500 °C, Ca increases the NO reduction efficiency by 5 %, promoting NO reduction, because Ca lowers the energy barrier of the rate-determining step, thus accelerating the reaction. At this temperature, the inhibition effect of Ca on CO release is not obvious. However, between 1000 °C and 1300 °C, Ca exhibits an inhibition effect on NO reduction. This is because Ca significantly inhibits CO release. At this temperature, the formation rate of NNH species is relatively slow, and NO reduction is influenced by homogeneous reduction. This study aims to provide fundamental information for exploring the application potential of ammonia coal co-firing in industrial furnaces.

Suggested Citation

  • Jia, Meng-Chuan & Su, Sheng & He, Li-Mo & Chen, Yi-Feng & Xu, Kai & Jiang, Long & Xu, Jun & Wang, Yi & Hu, Song & Xiang, Jun, 2023. "Experimental and density functional theory study on role of calcium in NO reduction by NH3 on char surface during ammonia co-firing with pulverized coal," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028785
    DOI: 10.1016/j.energy.2023.129484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim Khalil Adam & Abdul Rashid Abdul Aziz & Morgan R. Heikal & Suzana Yusup & Firmansyah & Ahmad Shahrul Ahmad & Ezrann Zharif Zainal Abidin, 2018. "Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    3. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
    4. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.
    6. Chen, Yi-Feng & Su, Sheng & Liu, Tao & Song, Ya-Wei & Wang, Xin & Qing, Meng-Xia & Wang, Yi & Hu, Song & Zhang, Zhong-Xiao & Xiang, Jun, 2022. "Microscopic mechanism and kinetics of NO heterogeneous reduction on char surface: A density functional theory study," Energy, Elsevier, vol. 250(C).
    7. Ye Sun & Weiyi Fan & Tianle Zhu & Xiaowei Hong, 2017. "Effect of CaO on NO x Reduction by Selective Non-Catalytic Reduction under Variable Gas Compositions in a Simulated Cement Precalciner Atmosphere," IJERPH, MDPI, vol. 14(12), pages 1-12, November.
    8. Ghappani, Seyyed Aliasghar & Karimi, Ali, 2023. "Optimal operation framework of an energy hub with combined heat, hydrogen, and power (CHHP) system based on ammonia," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yukai & Sun, Shaozeng & Feng, Dongdong & Zhang, Wenda & Zhao, Yijun & Qin, Yukun, 2023. "Syngas tempered pulverized coal reburning: Effect of different reaction gas components," Energy, Elsevier, vol. 271(C).
    2. Barbara Bielowicz & Rafał Morga, 2021. "Micro-Raman Spectroscopy of Selected Macerals of the Huminite Group: An Example from the Szczerców Lignite Deposit (Central Poland)," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    4. Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
    5. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    6. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    8. Chountalas, Theofanis D. & Founti, Maria & Tsalavoutas, Ioannis, 2023. "Evaluation of biofuel effect on performance & emissions of a 2-stroke marine diesel engine using on-board measurements," Energy, Elsevier, vol. 278(C).
    9. Wang, Siqi & Chong, Cheng Tung & Xie, Tian & Józsa, Viktor & Ng, Jo-Han, 2023. "Ammonia/methane dual-fuel injection and Co-firing strategy in a swirl flame combustor for pollutant emissions control," Energy, Elsevier, vol. 281(C).
    10. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    11. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    12. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
    13. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
    14. Qiao, Yanyu & Chen, Zhichao & Wu, Xiaolan & Li, Zhengqi, 2023. "Effect of demineralization on waste tire pyrolysis char physical, chemical characteristics and combustion characteristics," Energy, Elsevier, vol. 284(C).
    15. Ma, Cheng & Zhao, Yuzhen & Lang, Tingting & Zou, Chong & Zhao, Junxue & Miao, Zongcheng, 2023. "Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars," Energy, Elsevier, vol. 277(C).
    16. Zhou, Chunbao & Chen, Yuanxiang & Xing, Xuyang & Chen, Lei & Liu, Chenglong & Chao, Li & Yao, Bang & Zhang, Yingwen & Dai, Jianjun & Liu, Yang & Wang, Jun & Dong, Jie & Li, Yunxiang & Fan, Dekai & Wan, 2024. "Pilot-scale pyrolysis and activation of typical biomass chips in an interconnected dual fluidized bed: Comparison and analysis of products," Renewable Energy, Elsevier, vol. 225(C).
    17. Kangli Xiang & Jinyu Chen & Li Yang & Jianfa Wu & Pengjia Shi, 2024. "Equilibrium Interaction Strategies for Integrated Energy System Incorporating Demand-Side Management Based on Stackelberg Game Approach," Energies, MDPI, vol. 17(14), pages 1-24, July.
    18. Zhang, Haifeng & Ju, Shuai & Jin, Xin & Yuan, Yan & Wu, Yingji & Nadda, Ashok Kumar & Pugazhendhi, Arivalagan & Cai, Liping & Xia, Changlei, 2022. "A review of sensor applications towards precise control of pyrolysis of solid waste and biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Liu, Xing & Wang, Ying & Bai, Yuanqi & Yang, Wenxu, 2023. "Development of reduced and optimized mechanism for ammonia/ hydrogen mixture based on genetic algorithm," Energy, Elsevier, vol. 270(C).
    20. Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.