IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024258.html
   My bibliography  Save this article

Research on a new method of “blocking-sealing” dust control and removal in fully mechanized heading face

Author

Listed:
  • Xie, Sen
  • Yu, Haiming
  • Ye, Yuxi
  • Zhao, Junwei
  • Hou, Chuangen
  • Zhao, Dongliang

Abstract

The fully mechanized heading face has the disadvantages of a large open space, difficult to seal, and low dust reduction efficiency. To overcome these issues, a new “blocking-sealing” method for cutting the produced dust was proposed in this study. The impact mechanism of ventilation parameters on dust pollution was analyzed using the CFD-DPM method. The results show that in the original state, the transverse offset airflow generated by the roller of the heading machine carries high-concentration dust into the sidewalk space, the length of the high-concentration dust area of more than 570 mg/m3 in the sidewalk space is about 16 m. After using the new method, the distribution of airflow mechanical energy between the sidewalk space and the bracket-coal wall space was redistributed. When the air suction volume was 600 m3/min, the high-concentration dust area basically disappeared. By increasing the air volume ratio to 1:1.5, the dust concentration in the original high-concentration dust area of the sidewalk space was basically lower than 172 mg/m3. When the side opening of the dust exhaust duct for suction (SO), the dust removal efficiency in the local area of the sidewalk reached 80.7%, which provides a new method for clean coal production.

Suggested Citation

  • Xie, Sen & Yu, Haiming & Ye, Yuxi & Zhao, Junwei & Hou, Chuangen & Zhao, Dongliang, 2023. "Research on a new method of “blocking-sealing” dust control and removal in fully mechanized heading face," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024258
    DOI: 10.1016/j.energy.2023.129031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Tao & Nie, Wen & Chen, Dawei & Xiu, Zihao & Yang, Bo & Liu, Qiang & Guo, Lidian, 2020. "CFD modeling of coal dust migration in an 8.8-meter-high fully mechanized mining face," Energy, Elsevier, vol. 212(C).
    2. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    2. Sheng Wang & Xuelong Li & Qizhi Qin, 2022. "Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Gan, Jian & Wang, Deming & Xiao, Zhongmin & Wang, Ya-nan & Zhang, Kang & Zhu, Xiaolong & Li, Shuailong, 2023. "Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal," Energy, Elsevier, vol. 271(C).
    4. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    5. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    6. Tian, Zhang & Mu, Xinsheng & Deji, Jing & Shaocheng, Ge & Xiangxi, Meng & Shuli, Zhao & Xiaowei, Zhang, 2023. "Influence of aerodynamic pressure on dust removal by supersonic siphon atomization," Energy, Elsevier, vol. 282(C).
    7. Jiang, Bingyou & Ji, Ben & Yuan, Liang & Yu, Chang-Fei & Tao, Wenhan & Zhou, Yu & Wang, Haoyu & Wang, Xiao-Han & Liao, Maolin, 2023. "Experimental and molecular dynamics simulation study of the ionic liquids’ chain-length on wetting of bituminous coal," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.