IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223015384.html
   My bibliography  Save this article

Hydrodynamic modeling of coaxial confined particle-laden turbulent flow

Author

Listed:
  • Liu, Yang
  • Liu, Jiatong
  • Li, Shu
  • Li, Guohui
  • Zhou, Lixing

Abstract

A new particle subgrid scale model is proposed to consider the effect of gas flow on particle motions. Multiphase gas-particle turbulent flow is modeled by a second-order moment two-phase turbulence model involving a four-way coupling strategy to describe the interactions among gas-particle, particle-gas and particle-particle collisions. A large eddy simulation algorithm is developed to solve the hydrodynamic parameters of confined swirling and non-swirling particle-laden flow in coaxial chamber. Results show that predictions are well agreed with experimental data. Vortex structures and vortices distributions of gas and particle flow are quietly different. Coherent structures of swirling particle flows are not observed, and length of recirculation region is almost one quarter of non-swirling flow. Compared to developed flow region of non-swirling flow, standard deviation values of granular temperature at near entrance decreased by 5.5 times. Dominant frequencies of particle number density of non-swirling and swirling flows are 18 Hz and 10 Hz. Particle dispersions exhibit anisotropic characteristics, and their distributions are not in accordance with the normal distribution. The 2D turbulence model needs to be further improved due to the failure of describing vortex stretch in this job.

Suggested Citation

  • Liu, Yang & Liu, Jiatong & Li, Shu & Li, Guohui & Zhou, Lixing, 2023. "Hydrodynamic modeling of coaxial confined particle-laden turbulent flow," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015384
    DOI: 10.1016/j.energy.2023.128144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abubakar, Zubairu & Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2018. "Experimental and numerical analysis of non-premixed oxy-combustion of hydrogen-enriched propane in a swirl stabilized combustor," Energy, Elsevier, vol. 165(PB), pages 1401-1414.
    2. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    3. Benim, Ali Cemal & Deniz Canal, Cansu & Boke, Yakup Erhan, 2022. "Computational investigation of oxy-combustion of pulverized coal and biomass in a swirl burner," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
    2. Huang, Junxuan & Liao, Yanfen & Lin, Jianhua & Dou, Changjiang & Huang, Zengxiu & Yu, Xiongwei & Yu, Zhaosheng & Chen, Chunxiang & Ma, Xiaoqian, 2024. "Numerical simulation of the co-firing of pulverized coal and eucalyptus wood in a 1000MWth opposed wall-fired boiler," Energy, Elsevier, vol. 298(C).
    3. Joo, Seongpil & Choi, Jongwun & Lee, Min Chul & Kim, Namkeun, 2021. "Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread," Energy, Elsevier, vol. 224(C).
    4. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    5. Jena, Ashutosh & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2022. "Optical and computational investigations of the effect of Spray-Swirl interactions on autoignition and soot formation in a compression ignition engine fuelled by Diesel, dieseline and diesohol," Applied Energy, Elsevier, vol. 324(C).
    6. Liu, Lijuan & Zhang, Qi, 2019. "Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone," Energy, Elsevier, vol. 171(C), pages 666-677.
    7. Park, Yeseul & Li, Xinzhuo & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2022. "Fuel interchangeability investigation of new Russian PNG for conventional gas appliances," Energy, Elsevier, vol. 260(C).
    8. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A. & Teoh, Yew Heng, 2022. "Palm biodiesel spray and combustion characteristics in a new micro gas turbine combustion chamber design," Energy, Elsevier, vol. 254(PB).
    9. Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
    10. Ali, Asif & Nemitallah, Medhat A. & Abdelhafez, Ahmed & Hussain, Muzafar & Kamal, M. Mustafa & Habib, Mohamed A., 2021. "Comparative analysis of the stability and structure of premixed C3H8/O2/CO2 and C3H8/O2/N2 flames for clean flexible energy production," Energy, Elsevier, vol. 214(C).
    11. Liu, Mingyu & Chen, Sheng & Zhu, Hongwei & Zhou, Zijian & Xu, Jingying, 2023. "Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner," Energy, Elsevier, vol. 282(C).
    12. Fu, Zaiguo & Sui, Lichao & Lu, Jin & Liu, Jiang & Weng, Peifen & Zeng, Zhuoxiong & Pan, Weiguo, 2023. "Investigation on effects of hydrogen addition to the thermal performance of a traditional counter-flow combustor," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.