IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics036054422301527x.html
   My bibliography  Save this article

Inverse methods: How feasible are spatially low-resolved capacity expansion modelling results when disaggregated at high spatial resolution?

Author

Listed:
  • Frysztacki, Martha Maria
  • Hagenmeyer, Veit
  • Brown, Tom

Abstract

Spatially highly-resolved capacity expansion models are often simplified to a lower spatial resolution because they are computationally intensive. The simplification mixes sites with different renewable features while ignoring transmission lines that can cause congestion. As a consequence, the results may represent an infeasible system when the capacities are fed back at higher spatial detail. Thus far there has been no detailed investigation of how to disaggregate results and whether the spatially highly-resolved disaggregated model is feasible. This is challenging since there is no unique way to invert the clustering.

Suggested Citation

  • Frysztacki, Martha Maria & Hagenmeyer, Veit & Brown, Tom, 2023. "Inverse methods: How feasible are spatially low-resolved capacity expansion modelling results when disaggregated at high spatial resolution?," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s036054422301527x
    DOI: 10.1016/j.energy.2023.128133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301527X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    2. Grochowicz, Aleksander & van Greevenbroek, Koen & Benth, Fred Espen & Zeyringer, Marianne, 2023. "Intersecting near-optimal spaces: European power systems with more resilience to weather variability," Energy Economics, Elsevier, vol. 118(C).
    3. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Ulf Philipp Müller & Birgit Schachler & Malte Scharf & Wolf-Dieter Bunke & Stephan Günther & Julian Bartels & Guido Pleßmann, 2019. "Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids," Energies, MDPI, vol. 12(11), pages 1-30, May.
    5. Frysztacki, Martha Maria & Hörsch, Jonas & Hagenmeyer, Veit & Brown, Tom, 2021. "The strong effect of network resolution on electricity system models with high shares of wind and solar," Applied Energy, Elsevier, vol. 291(C).
    6. Jalil-Vega, Francisca & Hawkes, Adam D., 2018. "The effect of spatial resolution on outcomes from energy systems modelling of heat decarbonisation," Energy, Elsevier, vol. 155(C), pages 339-350.
    7. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    8. Scaramuzzino, Chiara & Garegnani, Giulia & Zambelli, Pietro, 2019. "Integrated approach for the identification of spatial patterns related to renewable energy potential in European territories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 1-13.
    9. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    10. Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
    11. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    12. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganter, Alissa & Gabrielli, Paolo & Sansavini, Giovanni, 2024. "Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    2. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Shruthi Patil & Leander Kotzur & Detlef Stolten, 2022. "Advanced Spatial and Technological Aggregation Scheme for Energy System Models," Energies, MDPI, vol. 15(24), pages 1-26, December.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Phillips, K. & Moncada, J.A. & Ergun, H. & Delarue, E., 2023. "Spatial representation of renewable technologies in generation expansion planning models," Applied Energy, Elsevier, vol. 342(C).
    6. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    7. Grochowicz, Aleksander & Benth, Fred Espen & Zeyringer, Marianne, 2024. "Spatio-temporal smoothing and dynamics of different electricity flexibility options for highly renewable energy systems—Case study for Norway," Applied Energy, Elsevier, vol. 356(C).
    8. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    9. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    10. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    11. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    12. Galván, Antonio & Haas, Jannik & Moreno-Leiva, Simón & Osorio-Aravena, Juan Carlos & Nowak, Wolfgang & Palma-Benke, Rodrigo & Breyer, Christian, 2022. "Exporting sunshine: Planning South America’s electricity transition with green hydrogen," Applied Energy, Elsevier, vol. 325(C).
    13. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    14. Reichenberg, Lina & Hedenus, Fredrik & Mattsson, Niclas & Verendel, Vilhelm, 2022. "Deep decarbonization and the supergrid – Prospects for electricity transmission between Europe and China," Energy, Elsevier, vol. 239(PE).
    15. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    16. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    17. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    18. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    19. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    20. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s036054422301527x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.