IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i9p807-812.html
   My bibliography  Save this article

Thermo-hydraulic performance of a solar air heater with n-subcollectors in series and parallel configuration

Author

Listed:
  • Karwa, Rajendra
  • Garg, S.N.
  • Arya, A.K.

Abstract

In the present work, a thermo-hydraulic performance evaluation of the collector arrays (collector modules or subcollectors arranged in series, parallel or combined series and parallel mode) has been carried out using a mathematical model. Based on the performance evaluation criterion of an equal pumping power requirement, the configuration with n-subcollectors in parallel is found to be the best.

Suggested Citation

  • Karwa, Rajendra & Garg, S.N. & Arya, A.K., 2002. "Thermo-hydraulic performance of a solar air heater with n-subcollectors in series and parallel configuration," Energy, Elsevier, vol. 27(9), pages 807-812.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:9:p:807-812
    DOI: 10.1016/S0360-5442(02)00016-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00016-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karwa, Rajendra & Solanki, S.C & Saini, J.S, 2001. "Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates," Energy, Elsevier, vol. 26(2), pages 161-176.
    2. Yeh, Ho-Ming & Lin, Tong-Tshien, 1997. "Solar air heaters with two collectors in series," Energy, Elsevier, vol. 22(9), pages 933-936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karwa, Rajendra & Chauhan, Kalpana, 2010. "Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate," Energy, Elsevier, vol. 35(1), pages 398-409.
    2. Karwa, Rajendra & Karwa, Nitin & Misra, Rohit & Agarwal, P.C., 2007. "Effect of flow maldistribution on thermal performance of a solar air heater array with subcollectors in parallel," Energy, Elsevier, vol. 32(7), pages 1260-1270.
    3. Gupta, M.K. & Kaushik, S.C., 2008. "Exergetic performance evaluation and parametric studies of solar air heater," Energy, Elsevier, vol. 33(11), pages 1691-1702.
    4. Naphon, Paisarn, 2005. "On the performance and entropy generation of the double-pass solar air heater with longitudinal fins," Renewable Energy, Elsevier, vol. 30(9), pages 1345-1357.
    5. Ewe, Win Eng & Fudholi, Ahmad & Sopian, Kamaruzzaman & Moshery, Refat & Asim, Nilofar & Nuriana, Wahidin & Ibrahim, Adnan, 2022. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karwa, Rajendra & Karwa, Nitin & Misra, Rohit & Agarwal, P.C., 2007. "Effect of flow maldistribution on thermal performance of a solar air heater array with subcollectors in parallel," Energy, Elsevier, vol. 32(7), pages 1260-1270.
    2. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    3. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    4. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    5. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    6. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    7. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    8. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    9. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    10. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
    11. Kim, Kyung Min & Kim, Beom Seok & Lee, Dong Hyun & Moon, Hokyu & Cho, Hyung Hee, 2010. "Optimal design of transverse ribs in tubes for thermal performance enhancement," Energy, Elsevier, vol. 35(6), pages 2400-2406.
    12. Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
    13. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2017. "Thermohydraulic performance analysis of an arc shape wire roughened solar air heater," Renewable Energy, Elsevier, vol. 108(C), pages 598-614.
    14. Karwa, Rajendra & Chauhan, Kalpana, 2010. "Performance evaluation of solar air heaters having v-down discrete rib roughness on the absorber plate," Energy, Elsevier, vol. 35(1), pages 398-409.
    15. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    16. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    17. Gupta, M.K. & Kaushik, S.C., 2009. "Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies," Renewable Energy, Elsevier, vol. 34(3), pages 465-476.
    18. Fan, Wenke & Kokogiannakis, Georgios & Ma, Zhenjun, 2019. "Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes," Renewable Energy, Elsevier, vol. 138(C), pages 90-105.
    19. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    20. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:9:p:807-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.