IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223013993.html
   My bibliography  Save this article

Utilizing fly ash from a power plant company for CO2 capture in a microchannel

Author

Listed:
  • Nejati, Kaveh
  • Aghel, Babak

Abstract

The separation of carbon dioxide by mineral waste with alkaline properties is an innovative technology for storing carbon dioxide. This experiment utilized an aqueous solution containing seawater and fly ash in a microchannel to investigate CO2 absorption. In all experiments, the concentration of CO2 in feed gas was 10.5% at atmospheric pressure. A number of variables were examined, including temperature (10–50 °C), inlet solvent flow rate (50–300 ml/h), inlet gas flow rate (50–250 ml/min), as well as fly ash to seawater ratios (1:25, 1:50, 1:75, 1:100, 1:125,1:150, 1:175 and 1:200 gr/ml). The study found that an increase in the concentration of fly ash in the solution and a higher flow rate of the solvent led to a noteworthy improvement in both the absorption percentage and volume transfer coefficient of gas-based gas. The increase in gas flow rate led to a decrease in the percentage of CO2 removal and an increase in the gas-based volumetric mass transfer coefficient. Under optimal operating conditions, absorption percentages were 96.25% and gas-based volumetric mass transfer coefficients were 63.21 (kmol h −1m−3 kPa−1) were achieved even though the temperature in the range of (10–50 °C) has a negative impact on the absorption rate. According to the overall gas-based volumetric mass transfer coefficient, microchannel reactors provide higher absorption efficiency than other mass transfer devices.

Suggested Citation

  • Nejati, Kaveh & Aghel, Babak, 2023. "Utilizing fly ash from a power plant company for CO2 capture in a microchannel," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013993
    DOI: 10.1016/j.energy.2023.128005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    2. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    3. Sarlak, Shokouh & Valeh-e-Sheyda, Peyvand, 2022. "The contribution of l-Arginine to the mass transfer performance of CO2 absorption by an aqueous solution of methyl diethanolamine in a microreactor," Energy, Elsevier, vol. 239(PD).
    4. Ganapathy, H. & Shooshtari, A. & Dessiatoun, S. & Alshehhi, M. & Ohadi, M., 2014. "Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor," Applied Energy, Elsevier, vol. 119(C), pages 43-56.
    5. Li, Hongwei & Tang, Zhigang & Xing, Xiao & Guo, Dong & Cui, Longpeng & Mao, Xian-zhong, 2018. "Study of CO2 capture by seawater and its reinforcement," Energy, Elsevier, vol. 164(C), pages 1135-1144.
    6. Rashidi, Hamed & Rasouli, Parvaneh & Azimi, Hossein, 2022. "A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study," Energy, Elsevier, vol. 244(PA).
    7. Katja Ohenoja & Janne Pesonen & Juho Yliniemi & Mirja Illikainen, 2020. "Utilization of Fly Ashes from Fluidized Bed Combustion: A Review," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    8. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    9. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    2. Hu, Ting & Yang, Tao & Dindoruk, Birol & Torabi, Farshid & Mcpherson, Brian & Emami-Meybodi, Hamid, 2024. "Investigation the impact of methane leakage on the marine carbon sink," Applied Energy, Elsevier, vol. 360(C).
    3. Dehbani, Maryam & Rashidi, Hamed, 2023. "Simultaneous use of microfluidics, ultrasound and alcoholic solvents for improving CO2 desorption process," Energy, Elsevier, vol. 276(C).
    4. Shaterabadi, Farnoush & Rashidi, Hamed, 2024. "Experimental and modeling study of CO2 capture by phase change blend of triethylenetetramine-ethanol solvent," Energy, Elsevier, vol. 307(C).
    5. Choubtashani, Shima & Rashidi, Hamed, 2023. "CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling," Energy, Elsevier, vol. 267(C).
    6. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    7. Jiaxiao Ma & Nan Yan & Mingyi Zhang & Junwei Liu & Xiaoyu Bai & Yonghong Wang, 2020. "Mechanical Characteristics of Soda Residue Soil Incorporating Different Admixture: Reuse of Soda Residue," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    8. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    9. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2014. "Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition," Applied Energy, Elsevier, vol. 136(C), pages 509-518.
    10. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    11. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    13. Aghel, Babak & Sahraie, Sasan & Heidaryan, Ehsan, 2020. "Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor," Energy, Elsevier, vol. 201(C).
    14. Marc Fadel & Eliane Farah & Nansi Fakhri & Frédéric Ledoux & Dominique Courcot & Charbel Afif, 2024. "A Comprehensive Review of PM-Related Studies in Industrial Proximity: Insights from the East Mediterranean Middle East Region," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    15. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    16. Chana Phutthananon & Niyawan Tippracha & Pornkasem Jongpradist & Jukkrawut Tunsakul & Weerachart Tangchirapat & Pitthaya Jamsawang, 2023. "Investigation of Strength and Microstructural Characteristics of Blended Cement-Admixed Clay with Bottom Ash," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    17. Sefa Yalcin & Alp Er Ş. Konukman & Adnan Midilli, 2020. "A perspective on fossil fuel based flue gas emission reduction technologies," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 664-677, August.
    18. Amin Mojarad Garehbagh & Saeid Rajabzadeh & Mahmoud A. Shouman & Mohamed R. Elmarghany & Mohamed S. Salem & Nasrul Arahman & Toraj Mohammadi & Hideto Matsuyama, 2022. "Simulation Assessment of Inlet Parameters and Membrane-Surface-Structure Effects on CO 2 Absorption Flux in Membrane Contactors," Sustainability, MDPI, vol. 14(21), pages 1-15, November.
    19. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Lin, Yi-Feng & Chang, Jun-Min & Ye, Qian & Tung, Kuo-Lun, 2015. "Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors," Applied Energy, Elsevier, vol. 154(C), pages 21-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.