IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223013956.html
   My bibliography  Save this article

Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion

Author

Listed:
  • Sayadzadeh, Mohammad Esmaiel
  • Samani, Majid Riahi
  • Toghraie, Davood
  • Emami, Sobhan
  • Eftekhari, Seyed Ali

Abstract

This analytical study appraises the emission characteristics of different pollutants such as CO and NOX as well as conducting chemical and physical exergy analyses on conventional and Mild combustion regimes. The RANS turbulence approach and the k-ε RNG model were utilized in this study to simulate turbulence, whereas the eddy dissipation concept (EDC) model and the GRI–Mech 2.11 chemical mechanism were adopted to treat the turbulence-chemistry interaction. This study evaluated local and global pollutant emissions and exergy efficiency along the reacting jet and explored the effects of temperature and chemical species on the physical and chemical exergies in MILD combustion in comparison to conventional combustion. It is found that the overall exergy efficiency of MILD combustion rises by 1, 3, and 4% for oxygen mass fractions of 3, 6, and 9% in hot oxidizer coflow, with the NOx emissions are 81, 72, and 55% lower than conventional combustion, respectively. Chemical exergy is greater than physical exergy near the fuel nozzle due to high CH4 and H2 concentrations. Chemical exergy reduces along the burner due to chemical reactions, while physical exergy increases due to the increased temperature. However, owing to the trade-off between these two exergies along the flame jet, the total exergy approaches a constant value at large distances from the burner. The maximum total exergy occurs at a distance of 0.12 m from the fuel nozzle, with chemical exergy accounting for 83% of the total exergy. In the outlet (0.5 m from the fuel nozzle), chemical exergy accounts only for 30% of the total exergy. It can also be concluded that the exergy is stabilized at a distance of 0.3 m from the nozzle (60% of the domain length). Despite a higher local CO emission in conventional combustion than in MILD combustion, the CO emission substantially decreases at a smaller distance from the nozzle in conventional combustion due to the high O2 concentration.

Suggested Citation

  • Sayadzadeh, Mohammad Esmaiel & Samani, Majid Riahi & Toghraie, Davood & Emami, Sobhan & Eftekhari, Seyed Ali, 2023. "Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013956
    DOI: 10.1016/j.energy.2023.128001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tu, Yaojie & Xu, Mingchen & Zhou, Dezhi & Wang, Qingxiang & Yang, Wenming & Liu, Hao, 2019. "CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres," Applied Energy, Elsevier, vol. 240(C), pages 1003-1013.
    2. Vihervaara, Petteri & Franzese, Pier Paolo & Buonocore, Elvira, 2019. "Information, energy, and eco-exergy as indicators of ecosystem complexity," Ecological Modelling, Elsevier, vol. 395(C), pages 23-27.
    3. Wu, Junnian & Wang, Na, 2020. "Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study," Energy, Elsevier, vol. 206(C).
    4. Kuang, Yucheng & He, Boshu & Tong, Wenxiao & Wang, Chaojun & Ying, Zhaoping, 2020. "Effects of oxygen concentration and inlet velocity on pulverized coal MILD combustion," Energy, Elsevier, vol. 198(C).
    5. Caton, Jerald A, 2000. "On the destruction of availability (exergy) due to combustion processes — with specific application to internal-combustion engines," Energy, Elsevier, vol. 25(11), pages 1097-1117.
    6. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    7. Cheong, Kin-Pang & Wang, Guochang & Wang, Bo & Zhu, Rong & Ren, Wei & Mi, Jianchun, 2019. "Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace," Energy, Elsevier, vol. 170(C), pages 1181-1190.
    8. Kuang, Yucheng & He, Boshu & Wang, Chaojun & Tong, Wenxiao & He, Di, 2021. "Numerical analyses of MILD and conventional combustions with the Eddy Dissipation Concept (EDC)," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jie & Guo, Qiang & Liang, Wenkai & Feng, Xuning & Wang, Hewu, 2024. "On the NTC behaviors in explosion limits of C1 to C3 n-alkane/air mixtures," Energy, Elsevier, vol. 294(C).
    2. Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaker, Ahmad & Fordoei, E. Ebrahimi & Boyaghchi, Fateme Ahmadi, 2023. "Study of NO emission from CH4-air, oxygen-enriched, and oxy-CH4 combustion under HTC and MILD regimes: Impact of wall thermal condition in different oxidant temperature and dilution level," Energy, Elsevier, vol. 277(C).
    2. Hu, Fan & Li, Pengfei & Zhang, Tai & Zu, Daohua & Cheng, Pengfei & Liu, Yaowei & Mi, Jianchun & Liu, Zhaohui, 2022. "Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air," Energy, Elsevier, vol. 244(PA).
    3. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Tian, Junjian & Liu, Xiang & Shi, Hao & Yao, Yurou & Ni, Zhanshi & Meng, Kengsheng & Hu, Peng & Lin, Qizhao, 2024. "Experimental study on MILD combustion of methane under non-preheated condition in a swirl combustion furnace," Applied Energy, Elsevier, vol. 363(C).
    5. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    6. Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
    7. Fordoei, Esmaeil Ebrahimi & Boyaghchi, Fateme Ahmadi, 2022. "Influence of wall thermal conditions on the ignition, flame structure, and temperature behaviors in air-fuel, oxygen-enhanced, and oxy-fuel combustion under the MILD and high-temperature regimes," Energy, Elsevier, vol. 255(C).
    8. Hu, Fan & Xiong, Biao & Liu, Xuhui & Huang, Xiaohong & Li, Yu & Liu, Zhaohui, 2023. "Optimized TGA-based experimental method for studying intrinsic kinetics of coal char oxidation under moderate or intense low-oxygen dilution oxy-fuel conditions," Energy, Elsevier, vol. 265(C).
    9. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    10. Cheong, Kin-Pang & Wang, Guochang & Si, Jicang & Mi, Jianchun, 2021. "Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification," Energy, Elsevier, vol. 216(C).
    11. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    12. Eyal, Amnon & Tartakovsky, Leonid, 2020. "Second-law analysis of the reforming-controlled compression ignition," Applied Energy, Elsevier, vol. 263(C).
    13. Wang, Qiangxiang & Xie, Mengqian & Tu, Yaojie & Liu, Hao & Li, Weijie, 2022. "Numerical study of fuel-NO formation and reduction in a reversed flow MILD combustion furnace firing ammonia-doped methane," Energy, Elsevier, vol. 252(C).
    14. Fordoei, E. Ebrahimi & Mazaheri, Kiumars & Mohammadpour, Amirreza, 2021. "Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion," Energy, Elsevier, vol. 218(C).
    15. Hu, Fan & Li, Pengfei & Cheng, Pengfei & Shi, Guodong & Gao, Yan & Liu, Yaowei & Ding, Cuijiao & Yang, Chao & Liu, Zhaohui, 2023. "Comparative study on homogeneous NO-reburning in flameless and swirl flame combustion," Energy, Elsevier, vol. 283(C).
    16. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2017. "A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 202(C), pages 199-212.
    17. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    18. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    19. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    20. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.