IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012550.html
   My bibliography  Save this article

Energy and exergy analyses of a regenerative Brayton cycle utilizing monochlorobiphenyl wastes as an alternative fuel

Author

Listed:
  • Bani-Hani, Ehab
  • El Haj Assad, Mamdouh
  • Alzara, Majed
  • Yosri, Ahmed M.
  • Aryanfar, Yashar
  • Castellanos, Humberto Garcia
  • Mohtaram, Soheil
  • Bouabidi, Abdallah

Abstract

This paper develops a thermodynamic model for the regenerative Brayton cycle that uses monochlorobiphenyl waste as fuel in a combustion chamber to power a gas turbine. The regenerator increases the air temperature entering the combustion chamber to react with monochlorobiphenyl wastes to produce a higher turbine inlet temperature. The pressure ratio and turbine inlet temperature can negatively or positively affect power plants' thermal efficiency. Thus, different pressure ratios and turbine inlet temperatures are used to calculate the overall thermal efficiency. A stoichiometric reaction-based gas composition model is used to determine the combustion gas composition at the combustion chamber exit and to calculate the heat capacity of air and combustion gases as a function of temperature. The exergy analysis of the proposed power plant is presented to determine the effect of the pressure ratio on the exergy efficiency of the turbine, compressor, and regenerator. According to the results, an increase in pressure ratio increases cycle thermal efficiency and turbine inlet temperature when using a regenerator, whereas the temperatures decrease when not using a regenerator. The Brayton cycle with a regenerator increases thermal efficiency from 30% to 100% for a pressure ratio of 6–30. This contrasts with the Brayton cycle without a regenerator. In addition, for the regenerative Brayton cycle, the turbine inlet temperature rises from 1050 K to 1200 K as the pressure ratio rises from 1 to 30. In the absence of the regenerator, however, this variation's trend is in the opposite direction. Furthermore, the results show that an increase in pressure ratio will increase the exergy efficiency of the compressor and regenerator, while a decrease will occur in the exergy efficiency of the turbine. Findings indicate that the regenerator has the highest exergy efficiency at a pressure ratio higher than five, followed by turbine and compressor exergy efficiency.

Suggested Citation

  • Bani-Hani, Ehab & El Haj Assad, Mamdouh & Alzara, Majed & Yosri, Ahmed M. & Aryanfar, Yashar & Castellanos, Humberto Garcia & Mohtaram, Soheil & Bouabidi, Abdallah, 2023. "Energy and exergy analyses of a regenerative Brayton cycle utilizing monochlorobiphenyl wastes as an alternative fuel," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012550
    DOI: 10.1016/j.energy.2023.127861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2023. "Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle," Energy, Elsevier, vol. 263(PB).
    2. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    3. Lingen Chen & Chenqi Tang & Huijun Feng & Yanlin Ge, 2020. "Power, Efficiency, Power Density and Ecological Function Optimization for an Irreversible Modified Closed Variable-Temperature Reservoir Regenerative Brayton Cycle with One Isothermal Heating Process," Energies, MDPI, vol. 13(19), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    4. Chang, Yue & Jia, Yulong & Hong, Tan, 2023. "Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes," Energy, Elsevier, vol. 283(C).
    5. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    6. Pengchao Zang & Lingen Chen & Yanlin Ge, 2022. "Maximizing Efficient Power for an Irreversible Porous Medium Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 15(19), pages 1-12, September.
    7. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    8. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    9. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    10. Hajialigol, Najmeh & Fattahi, Abolfazl & Karimi, Nader & Jamali, Mostafa & Keighobadi, Shervin, 2024. "Hybridized power-hydrogen generation using various configurations of Brayton-organic flash Rankine cycles fed by a sustainable fuel: Exergy and exergoeconomic analyses with ANN prediction," Energy, Elsevier, vol. 290(C).
    11. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).
    12. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    13. Petchsoongsakul, Nattawat & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Assabumrungrat, Suttichai, 2020. "Different water removal methods for facilitating biodiesel production from low-cost waste cooking oil containing high water content in hybridized reactive distillation," Renewable Energy, Elsevier, vol. 162(C), pages 1906-1918.
    14. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    15. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump," Energy, Elsevier, vol. 282(C).
    16. Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
    17. Jinhu He & Lingen Chen & Yanlin Ge & Shuangshuang Shi & Fang Li, 2022. "Multi-Objective Optimization of an Irreversible Single Resonance Energy-Selective Electron Heat Engine," Energies, MDPI, vol. 15(16), pages 1-19, August.
    18. Gabriel Cucui & Constantin Aurelian Ionescu & Ioana Raluca Goldbach & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin, 2018. "Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    19. Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca & Marcel Tsimba Mboko & Lucien Mbozi Mbozi, 2023. "Thermodynamic Performance of a Cogeneration Plant Driven by Waste Heat from Cement Kilns Exhaust Gases," Energies, MDPI, vol. 16(5), pages 1-24, March.
    20. Dan, Ma & He, Ang & Ren, Qiliang & Li, Wenbo & Huang, Kang & Wang, Xiangda & Feng, Boxuan & Sardari, Farshid, 2024. "Multi-aspect evaluation of a novel double-flash geothermally-powered integrated multigeneration system for generating power, cooling, and liquefied Hydrogen," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.