IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223003675.html
   My bibliography  Save this article

Experimental study of dynamic combustion behavior and heat transfer of heptane pool fire with burning time under thin fuel thickness (2.0 mm–14.0 mm)

Author

Listed:
  • Wang, Chen
  • Ji, Jie

Abstract

A dynamic combustion period occurs after the liquid fuel ignition, but the combustion mechanism is complicated and unclear due to dynamic heat transfer between the fuel and the substrate. This work uses a method of experimental research and theoretical analysis to study the dynamic combustion behaviour and heat transfer of pool fire with burning time (t) under thin fuel thickness (δ). Research contents include the relation of flame height (Z), burning rate (m˙), heat transfer between fuel and substrate with t, and the evolution mechanism of the output composition of total heat feedback with δ. The research found Z and m˙ increase with t until maintaining constant, whereas δ is different. Heat convection loss increases rapidly, then increases slowly, and finally keeps constant because thin-layer fuel is quickly heated. Heat radiation loss firstly surges, then fluctuates due to the combined effect of the flame shape and necking effect. Total heat loss tends from radiation to convection. The heat for heating fuel and the heat radiation reflected from the substrate are considered in the dynamic combustion stage. The fractions of heating fuel, vaporization heat, heat loss and heat reflection were calculated and studied. This work adds theoretical knowledge of fire dynamics

Suggested Citation

  • Wang, Chen & Ji, Jie, 2023. "Experimental study of dynamic combustion behavior and heat transfer of heptane pool fire with burning time under thin fuel thickness (2.0 mm–14.0 mm)," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003675
    DOI: 10.1016/j.energy.2023.126973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jian & Tam, Wai Cheong & Tang, Wei & Zhang, Chao & Li, Changhai & Lu, Shouxiang, 2020. "Experimental study of the effect of ambient pressure on oscillating behavior of pool fires," Energy, Elsevier, vol. 203(C).
    2. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).
    3. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).
    4. Li, Manhou & Han, Guangzhao & Pan, Yang & Sun, Lida & Li, Quan & Meng, Weijing, 2020. "Experimental investigation on flame spread over jet fuel with influence of external heat radiation," Energy, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    2. Tong, Weixin & Ji, Jie & Wang, Chen & Li, Chunxiao & Zhu, Jiping, 2023. "Experimental study on the combustion behaviors of continuous methanol spill fires on the vertical plane," Energy, Elsevier, vol. 285(C).
    3. Fang, Lulu & Fang, Jun & Hu, Yong & Tian, Fengyuan & Wang, Mengwen & Shah, Hassan Raza & Lang, Xuqing & Tian, Zhijian, 2023. "Experimental study of coupling between the burning behaviors of fuel storage tanks and thin fuel pools," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    2. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    3. Zhao, Jinlong & Zhang, Xiang & Zhang, Jianping & Wang, Wei & Chen, Changkun, 2022. "Experimental study on the flame length and burning behaviors of pool fires with different ullage heights," Energy, Elsevier, vol. 246(C).
    4. Yang, Jianfeng & Zhang, Bo & Chen, Liangchao & Diao, Xu & Hu, Yuanhao & Suo, Guanyu & Li, Ru & Wang, Qianlin & Li, Jinghai & Zhang, Jianwen & Dou, Zhan, 2023. "Improved solid radiation model for thermal response in large crude oil tanks," Energy, Elsevier, vol. 284(C).
    5. Tong, Weixin & Ji, Jie & Wang, Chen & Li, Chunxiao & Zhu, Jiping, 2023. "Experimental study on the combustion behaviors of continuous methanol spill fires on the vertical plane," Energy, Elsevier, vol. 285(C).
    6. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    7. Li, Manhou & Xu, Zhiguo & Luo, Qiuting & Wang, Changjian, 2023. "Investigation of bicubic flame radiation model of continuously opposed spilling fire over n-butanol fuel," Energy, Elsevier, vol. 272(C).
    8. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    9. Tang, Fei & Hu, Peng & Shi, Congling, 2021. "Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures," Energy, Elsevier, vol. 215(PB).
    10. Sun, Xiepeng & Zhang, Xiaolei & Lv, Jiang & Chen, Xiaotao & Hu, Longhua, 2023. "Experimental study on the buoyant turbulent diffusion flame height of various intermittent levels," Applied Energy, Elsevier, vol. 351(C).
    11. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).
    12. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).
    13. Wang, Jinhui & Zhang, Ruiqing & Wang, Yongchang & Shi, Long & Zhang, Shaogang & Liu, Jiahao, 2023. "Experimental study on combustion characteristics of pool fires in a sealed environment," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.