IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i10p949-962.html
   My bibliography  Save this article

Exposure from cooking with biofuels: pollution monitoring and analysis for rural Tamil Nadu, India

Author

Listed:
  • Parikh, Jyoti
  • Balakrishnan, Kalpana
  • Laxmi, Vijay
  • Biswas, Haimanti

Abstract

In this paper, statistical analysis to examine the links between pollution and the types of kitchen and fuels is carried out for rural houses by first monitoring the indoor air quality (IAQ) followed by regression analysis of 418 households in Tamil Nadu, India. Exposures to the chief cook (females, who are mainly involved in the cooking during monitoring) are measured with personal monitors. The result shows that the values of respirable particles (PM10) ranged from 500–2000 μg/m3 during a two-hour cooking period from burning biofuels. The range depends on the type of kitchen and fuel use. Stationary monitors, placed two metres away from the stove, also recorded similar concentrations. Thus, the individuals who stay inside the houses using biofuels also face high concentrations even if they are not cooking. They could be senior citizens, children or adult males. Thus, there are two major findings from this analysis. Improved house designs that pay attention to kitchen location and put up partitions should also be considered in the intervention portfolio. Secondly, the exposure is not limited to the cooks alone. The rest of the family in the vicinity is also exposed through a “passive cooking effect”.

Suggested Citation

  • Parikh, Jyoti & Balakrishnan, Kalpana & Laxmi, Vijay & Biswas, Haimanti, 2001. "Exposure from cooking with biofuels: pollution monitoring and analysis for rural Tamil Nadu, India," Energy, Elsevier, vol. 26(10), pages 949-962.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:10:p:949-962
    DOI: 10.1016/S0360-5442(01)00043-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544201000433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00043-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, Kirk R. & Apte, Michael G. & Yuqing, Ma & Wongsekiarttirat, Wathana & Kulkarni, Ashwini, 1994. "Air pollution and the energy ladder in asian cities," Energy, Elsevier, vol. 19(5), pages 587-600.
    2. Leach, Gerald, 1992. "The energy transition," Energy Policy, Elsevier, vol. 20(2), pages 116-123, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swain, Swadhina Shikha & Mishra, Pulak, 2021. "How does cleaner energy transition influence standard of living and natural resources conservation? A study of households’ perceptions in rural Odisha, India," Energy, Elsevier, vol. 215(PB).
    2. Dalia Fadly & Francisco Fontes & Miet Maertens, 2023. "Fuel for food: Access to clean cooking fuel and food security in India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(2), pages 301-321, April.
    3. Mohapatra, Sandeep & Simon, Leo, 2014. "House bargaining over technology adoption," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170686, Agricultural and Applied Economics Association.
    4. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    5. Miah, Md. Danesh & Kabir, Rashel Rana Mohammad Sirajul & Koike, Masao & Akther, Shalina & Yong Shin, Man, 2010. "Rural household energy consumption pattern in the disregarded villages of Bangladesh," Energy Policy, Elsevier, vol. 38(2), pages 997-1003, February.
    6. Champier, D. & Bédécarrats, J.P. & Kousksou, T. & Rivaletto, M. & Strub, F. & Pignolet, P., 2011. "Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove," Energy, Elsevier, vol. 36(3), pages 1518-1526.
    7. Lohan, Shiv Kumar & Dixit, Jagvir & Kumar, Rohitashw & Pandey, Yogesh & Khan, Junaid & Ishaq, Mohd. & Modasir, Sheikh & Kumar, Dinesh, 2015. "Biogas: A boon for sustainable energy development in India׳s cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 95-101.
    8. Narasimha Rao, M. & Reddy, B. Sudhakara, 2007. "Variations in energy use by Indian households: An analysis of micro level data," Energy, Elsevier, vol. 32(2), pages 143-153.
    9. Najjar, Yousef S.H. & Kseibi, Musaab M., 2017. "Thermoelectric stoves for poor deprived regions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 597-602.
    10. Manoj Kumar, & Sachin Kumar, & Tyagi, S.K., 2013. "Design, development and technological advancement in the biomass cookstoves: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 265-285.
    11. Champier, D. & Bedecarrats, J.P. & Rivaletto, M. & Strub, F., 2010. "Thermoelectric power generation from biomass cook stoves," Energy, Elsevier, vol. 35(2), pages 935-942.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    2. Stéphane Couture & Serge Garcia & Arnaud Reynaud, 2009. "Household Energy Choices and Fuelwood Consumption: An Econometric Approach to the French Data," LERNA Working Papers 09.08.284, LERNA, University of Toulouse.
    3. Muhammad Saad Moeen & Muhammad Asjad Tariq & Saqib Shahzad & Shehryar Rashid, 2016. "Factors Influencing Choice of Energy Sources in Rural Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 905-920.
    4. Arabatzis, G. & Malesios, Ch., 2011. "An econometric analysis of residential consumption of fuelwood in a mountainous prefecture of Northern Greece," Energy Policy, Elsevier, vol. 39(12), pages 8088-8097.
    5. Zhang, Xiao-Bing & Hassen, Sied, 2017. "Household fuel choice in urban China: evidence from panel data," Environment and Development Economics, Cambridge University Press, vol. 22(4), pages 392-413, August.
    6. Rahut, Dil Bahadur & Das, Sukanya & De Groote, Hugo & Behera, Bhagirath, 2014. "Determinants of household energy use in Bhutan," Energy, Elsevier, vol. 69(C), pages 661-672.
    7. Farsi, Mehdi & Filippini, Massimo & Pachauri, Shonali, 2007. "Fuel choices in urban Indian households," Environment and Development Economics, Cambridge University Press, vol. 12(6), pages 757-774, December.
    8. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    9. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    10. Mensah, Justice Tei & Adu, George, 2015. "An empirical analysis of household energy choice in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1402-1411.
    11. Wang, Xia & Ding, Chao & Cai, Weiguang & Luo, Lizi & Chen, Mingman, 2021. "Identifying household cooling savings potential in the hot summer and cold winter climate zone in China: A stochastic demand frontier approach," Energy, Elsevier, vol. 237(C).
    12. Tafadzwa Makonese & Ayodeji P Ifegbesan & Isaac T Rampedi, 2018. "Household cooking fuel use patterns and determinants across southern Africa: Evidence from the demographic and health survey data," Energy & Environment, , vol. 29(1), pages 29-48, February.
    13. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    14. Alok Kumar Pandey, 2014. "Measuring Energy Intensity and Elasticity in India: A Dummy Variable Approach for Unit Level Household Data," Jindal Journal of Business Research, , vol. 3(1-2), pages 77-92, June.
    15. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    16. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    17. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    18. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    19. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    20. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:10:p:949-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.